• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
鱼市口
博客园    首页    新随笔    联系   管理    订阅  订阅
Q-learning and RL implementation

Aim: Train a model to properly play vintage video games...

Deep Q-learning Algo~

Very short Brief of Notations:

{A,pi(Policy),Q(quality of action-at a state),R ((s,a,s') - Reward, s state doing a to go to s' and get a specific r)}

 

So, if we want to train a model to play a video game like master. Modules are to be implemented as minimum, listed. below:

  • a class that can catch enough frames(typically consequtive) for game env analysis -> might need preprocessing to lower the memory overhead
  • a class of NN based model for training, weights init/update/storage/write/fork/reset; also the actions in a single play is recorded for optimization
  • a class that utilize the possible actions and abstrct to humble level to do anything player is going to do w/o generative issue at the beginning(can go general when model matured)
  • game to model/pre-processing module

This is just the minimum...

 

posted on 2023-09-01 19:14  鱼市口  阅读(20)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3