智能体的L0~L5分级(Levels of agent automation,智能体自动化级别)
Table 4: Levels of agent automation
表4:智能体自动化级别
Level 等级 |
Description 描述 |
Key characteristics 关键特征 |
Examples 示例 |
Level 0: Manual (no automation) 0级:手动(无自动化) |
No AI involvement; humans perform all actions无人工智能参与;所有操作均由人类执行 |
- No autonomy - 无自主性 |
Spreadsheets, command-line tools 电子表格、命令行工具 |
Level 1: Rule-based agents 一级:基于规则的智能体 |
Agents follow static logic (e.g., if-this-then-that) or rules; no context/environment perception or learning智能体遵循静态逻辑(例如,若此则彼)或规则;无上下文/环境感知或学习能力。 |
- Deterministic logic - 确定性逻辑 |
Traditional RPA tools, a rules-based chatbot for simple Q&A, an interactive voice response (IVR) system that routes calls based on keywords传统的机器人流程自动化(RPA)工具、用于简单问答的基于规则的聊天机器人、一种基于关键词来转接电话的交互式语音应答(IVR)系统 |
Level 2: Reactive agents 二级:反应式智能体 |
Agents can adapt responses based on defined conditions/context; use a narrow set of predefined tools (e.g., APIs, databases) to accomplish tasks but within well-defined workflows initiated by humans智能体可以根据定义的条件/上下文调整回复;使用少量预定义的工具(如应用程序编程接口、数据库)来完成任务,但这些任务需在由人类发起的明确工作流程内进行。 |
- Can process structured/unstructured input- 能够处理结构化/非结构化输入 - Executes decisions based on context and rigid workflows- 根据上下文和严格的工作流程执行决策 |
Intelligent RPA tools, chatbots that can answer common questions using a knowledge base, a location-based assistant (e.g., a local restaurant finder app)智能RPA工具、能够利用知识库回答常见问题的聊天机器人、基于位置的智能助手(例如,一款本地餐厅查找应用程序) |
Level 3: Conditional autonomous agents3级:有条件的自主智能体 |
AI can pursue goals with intermediate planning under constraints人工智能可以在约束条件下通过中间规划来实现目标 May require human intervention for novel or complex situations对于新出现或复杂的情况,可能需要人工干预。 |
- Task decomposition - 任务分解 |
GenAI agents, and copilots 生成式人工智能智能体与副驾驶 |
Level 4: Strategic autonomous agents第4级:战略型自主智能体 |
Complex reasoning and task decomposition to proactively achieve complex goals with minimal or no human oversight复杂推理和任务分解,以便在最少或无需人工监督的情况下主动实现复杂目标 Highly adaptable and can function in dynamic environments适应性强,能够在动态环境中运行
|
- Use advanced model reasoning and capabilities (e.g., multi-modal)- 使用先进的模型推理和能力(例如,多模态) |
A domain-specific AI agent that can proactively plan and execute a workflow end-to-end (e.g., Salesforce Agentforce and Devin, a software engineering agent from Cognition AI)一种特定领域的人工智能智能体,它可以主动地端到端规划并执行工作流程(例如,Salesforce Agentforce以及来自Cognition AI的软件工程智能体Devin) Multi-agent systems (e.g., AutoGPT) 多智能体系统(例如,AutoGPT) |
Level 5: General autonomous agents—artificial general intelligence (AGI) agents第5级:通用自主智能体——通用人工智能(AGI)智能体 |
Agents can operate across multiple domains, autonomously set their own goals, and use adaptive strategies智能体可以跨多个领域运作,自主设定自己的目标,并使用适应性策略。 |
- Multi-domain - 多领域 |
Hypothetical AGI agents, experimental假设的通用人工智能智能体,实验性的 |
Source: Omdia 来源:Omdia
如果这篇文章帮助到了你,你可以请作者喝一杯咖啡
