在.NET Core中使用MachineKey
在.NET Core中使用MachineKey
在上篇文章中,我介绍了Cookie是基于MachineKey生成的,MachineKey决定了Cookie生成的算法和密钥,并如果使用多台服务器做负载均衡时,必须指定一致的MachineKey。
但在.NET Core中,官方似乎并没有提供MachineKey实现,这为兼容.NET Framework的Cookie造成了许多障碍。
今天我将深入探索MachineKey这个类,看看里面到底藏了什么东西,本文的最后我将使用.NET Core来解密一个ASP.NET MVC生成的Cookie。
认识MachineKey
在.NET Framework中,machineKey首先需要一个配置,写在app.config或者web.config中,格式一般如下:
<machineKey validationKey="128个hex字符" decryptionKey="64个hex字符" validation="SHA1" decryption="AES" />
网上能找到可以直接生成随机
MachineKey的网站:https://www.developerfusion.com/tools/generatemachinekey/但
MachineKey的validationKey和decryptionKey的内容只要符合长度和hex要求,都是可以随意指定的,所以machineKey生成器的意义其实不大。
探索MachineKey
打开MachineKey的源代码如下所示(有删减):
public static class MachineKey {
public static byte[] Unprotect(byte[] protectedData, params string[] purposes) {
// ...有删减
return Unprotect(AspNetCryptoServiceProvider.Instance, protectedData, purposes);
}
// Internal method for unit testing.
internal static byte[] Unprotect(ICryptoServiceProvider cryptoServiceProvider, byte[] protectedData, string[] purposes) {
// If the user is calling this method, we want to use the ICryptoServiceProvider
// regardless of whether or not it's the default provider.
Purpose derivedPurpose = Purpose.User_MachineKey_Protect.AppendSpecificPurposes(purposes);
ICryptoService cryptoService = cryptoServiceProvider.GetCryptoService(derivedPurpose);
return cryptoService.Unprotect(protectedData);
}
}
具体代码可参见:https://referencesource.microsoft.com/#system.web/Security/MachineKey.cs,209
可见它本质是使用了AspNetCryptoServiceProvider.Instance,然后调用其GetCryptoService方法,然后获取一个cryptoService,最后调用Unprotect,注意其中还使用了一个Purpose的类,依赖非常多。
AspNetCryptoServiceProvider
其中AspNetCryptoServiceProvider.Instance的定义如下(有删减和整合):
internal sealed class AspNetCryptoServiceProvider : ICryptoServiceProvider {
private static readonly Lazy<AspNetCryptoServiceProvider> _singleton = new Lazy<AspNetCryptoServiceProvider>(GetSingletonCryptoServiceProvider);
internal static AspNetCryptoServiceProvider Instance {
get {
return _singleton.Value;
}
}
private static AspNetCryptoServiceProvider GetSingletonCryptoServiceProvider() {
// Provides all of the necessary dependencies for an application-level
// AspNetCryptoServiceProvider.
MachineKeySection machineKeySection = MachineKeySection.GetApplicationConfig();
return new AspNetCryptoServiceProvider(
machineKeySection: machineKeySection,
cryptoAlgorithmFactory: new MachineKeyCryptoAlgorithmFactory(machineKeySection),
masterKeyProvider: new MachineKeyMasterKeyProvider(machineKeySection),
dataProtectorFactory: new MachineKeyDataProtectorFactory(machineKeySection),
keyDerivationFunction: SP800_108.DeriveKey);
}
}
可见它本质是依赖于AspNetCryptoServiceProvider,它使用了MachineKeyCryptoAlgorithmFactory、MachineKeyMasterKeyProvider、MachineKeyDataProtectorFactory,以及一个看上去有点奇怪的SP800_108.DeriveKey。
AspNetCryptoServiceProvider的GetCryptoService方法如下:
public ICryptoService GetCryptoService(Purpose purpose, CryptoServiceOptions options = CryptoServiceOptions.None) {
ICryptoService cryptoService;
if (_isDataProtectorEnabled && options == CryptoServiceOptions.None) {
// We can only use DataProtector if it's configured and the caller didn't ask for any special behavior like cacheability
cryptoService = GetDataProtectorCryptoService(purpose);
}
else {
// Otherwise we fall back to using the <machineKey> algorithms for cryptography
cryptoService = GetNetFXCryptoService(purpose, options);
}
// always homogenize errors returned from the crypto service
return new HomogenizingCryptoServiceWrapper(cryptoService);
}
private NetFXCryptoService GetNetFXCryptoService(Purpose purpose, CryptoServiceOptions options) {
// Extract the encryption and validation keys from the provided Purpose object
CryptographicKey encryptionKey = purpose.GetDerivedEncryptionKey(_masterKeyProvider, _keyDerivationFunction);
CryptographicKey validationKey = purpose.GetDerivedValidationKey(_masterKeyProvider, _keyDerivationFunction);
// and return the ICryptoService
// (predictable IV turned on if the caller requested cacheable output)
return new NetFXCryptoService(_cryptoAlgorithmFactory, encryptionKey, validationKey, predictableIV: (options == CryptoServiceOptions.CacheableOutput));
}
注意其中有一个判断,我结合dnSpy做了认真的调试,发现它默认走的是GetNetFXCryptoService,也就是注释中所谓的<machineKey>算法。
然后GetNetFXCryptoService方法依赖于_masterKeyProvider和_keyDerivationFunction用来生成两个CryptographicKey,这两个就是之前所说的MachineKeyMasterKeyProvider和MachineKeyDataProtectorFactory。
注意其中还有一个HomogenizingCryptoServiceWrapper类,故名思义,它的作用应该是统一管理加密解释过程中的报错,实际也确实如此,我不作深入,有兴趣的读者可以看看原始代码在这:https://referencesource.microsoft.com/#system.web/Security/Cryptography/HomogenizingCryptoServiceWrapper.cs,25
最后调用NetFXCryptoService来执行Unprotect任务。
NetFXCryptoService
这个是重点了,源代码如下(有删减):
internal sealed class NetFXCryptoService : ICryptoService {
private readonly ICryptoAlgorithmFactory _cryptoAlgorithmFactory;
private readonly CryptographicKey _encryptionKey;
private readonly bool _predictableIV;
private readonly CryptographicKey _validationKey;
// ...有删减
// [UNPROTECT]
// INPUT: protectedData
// OUTPUT: clearData
// ALGORITHM:
// 1) Assume protectedData := IV || Enc(Kenc, IV, clearData) || Sign(Kval, IV || Enc(Kenc, IV, clearData))
// 2) Validate the signature over the payload and strip it from the end
// 3) Strip off the IV from the beginning of the payload
// 4) Decrypt what remains of the payload, and return it as clearData
public byte[] Unprotect(byte[] protectedData) {
// ...有删减
using (SymmetricAlgorithm decryptionAlgorithm = _cryptoAlgorithmFactory.GetEncryptionAlgorithm()) {
// 省略约100行代码😂
}
}
}
这个代码非常长,我直接一刀全部删减了,只保留注释。如果不理解先好好看注释,不理解它在干嘛,直接看代码可能非常难,有兴趣的可以直接先看看代码:https://referencesource.microsoft.com/#system.web/Security/Cryptography/NetFXCryptoService.cs,35
首先看注释:
protectedData := IV || Enc(Kenc, IV, clearData) || Sign(Kval, IV || Enc(Kenc, IV, clearData))
加密之后的数据由IV、密文以及签名三部分组成;
其中密文使用encryptionKey、IV和原始明文加密而来;
签名由validationKey作验证,传入参数是IV以及密文(这一点有点像jwt)。
现在再来看看代码:
int ivByteCount = decryptionAlgorithm.BlockSize / 8; // IV length is equal to the block size
int signatureByteCount = validationAlgorithm.HashSize / 8;
IV的长度由解密算法的BlockSize决定,签名算法的长度由验证算法的BlockSize决定,有了IV和签名的长度,就知道了密文的长度:
int encryptedPayloadByteCount = protectedData.Length - ivByteCount - signatureByteCount;
下文就应该是轻车熟路,依葫芦画瓢了,先验证签名:
byte[] computedSignature = validationAlgorithm.ComputeHash(protectedData, 0, ivByteCount + encryptedPayloadByteCount);
if (/*验证不成功*/) {
return null;
}
然后直接解密:
using (MemoryStream memStream = new MemoryStream()) {
using (ICryptoTransform decryptor = decryptionAlgorithm.CreateDecryptor()) {
using (CryptoStream cryptoStream = new CryptoStream(memStream, decryptor, CryptoStreamMode.Write)) {
cryptoStream.Write(protectedData, ivByteCount, encryptedPayloadByteCount);
cryptoStream.FlushFinalBlock();
// At this point
// memStream := clearData
byte[] clearData = memStream.ToArray();
return clearData;
}
}
}
可见这个类都是一些“正常操作”。之后我们来补充一下遗漏的部分。
MachineKeyCryptoAlgorithmFactory
首先是MachineKeyCryptoAlgorithmFactory,代码如下(只保留了重点):
switch (algorithmName) {
case "AES":
case "Auto": // currently "Auto" defaults to AES
return CryptoAlgorithms.CreateAes;
case "DES":
return CryptoAlgorithms.CreateDES;
case "3DES":
return CryptoAlgorithms.CreateTripleDES;
default:
return null; // unknown
}
switch (algorithmName) {
case "SHA1":
return CryptoAlgorithms.CreateHMACSHA1;
case "HMACSHA256":
return CryptoAlgorithms.CreateHMACSHA256;
case "HMACSHA384":
return CryptoAlgorithms.CreateHMACSHA384;
case "HMACSHA512":
return CryptoAlgorithms.CreateHMACSHA512;
default:
return null; // unknown
}
可见非常地直白、浅显易懂。
MachineKeyMasterKeyProvider
然后是MachineKeyMasterKeyProvider,核心代码如下:
private CryptographicKey GenerateCryptographicKey(string configAttributeName, string configAttributeValue, int autogenKeyOffset, int autogenKeyCount, string errorResourceString) {
byte[] keyMaterial = CryptoUtil.HexToBinary(configAttributeValue);
// If <machineKey> contained a valid key, just use it verbatim.
if (keyMaterial != null && keyMaterial.Length > 0) {
return new CryptographicKey(keyMaterial);
}
// 有删减
}
public CryptographicKey GetEncryptionKey() {
if (_encryptionKey == null) {
_encryptionKey = GenerateCryptographicKey(
configAttributeName: "decryptionKey",
configAttributeValue: _machineKeySection.DecryptionKey,
autogenKeyOffset: AUTOGEN_ENCRYPTION_OFFSET,
autogenKeyCount: AUTOGEN_ENCRYPTION_KEYLENGTH,
errorResourceString: SR.Invalid_decryption_key);
}
return _encryptionKey;
}
public CryptographicKey GetValidationKey() {
if (_validationKey == null) {
_validationKey = GenerateCryptographicKey(
configAttributeName: "validationKey",
configAttributeValue: _machineKeySection.ValidationKey,
autogenKeyOffset: AUTOGEN_VALIDATION_OFFSET,
autogenKeyCount: AUTOGEN_VALIDATION_KEYLENGTH,
errorResourceString: SR.Invalid_validation_key);
}
return _validationKey;
}
可见这个类就是从app.config/web.config中读取两个xml位置的值,并转换为CryptographicKey,然后CryptographicKey的本质就是一个字节数组byte[]。
注意,原版的
GenerateCrytographicKey函数其实很长,但重点确实就是前面这三行代码,后面的是一些骚操作,可以自动从一些配置的位置生成machineKey,这应该和machineKey节点缺失或者不写有关,不在本文考虑的范畴以内。有兴趣的读者可以参见原始代码:https://referencesource.microsoft.com/#system.web/Security/Cryptography/MachineKeyMasterKeyProvider.cs,87
MachineKeyDataProtectorFactory
其源代码如下(有删减):
internal sealed class MachineKeyDataProtectorFactory : IDataProtectorFactory {
public DataProtector GetDataProtector(Purpose purpose) {
if (_dataProtectorFactory == null) {
_dataProtectorFactory = GetDataProtectorFactory();
}
return _dataProtectorFactory(purpose);
}
private Func<Purpose, DataProtector> GetDataProtectorFactory() {
string applicationName = _machineKeySection.ApplicationName;
string dataProtectorTypeName = _machineKeySection.DataProtectorType;
Func<Purpose, DataProtector> factory = purpose => {
// Since the custom implementation might depend on the impersonated
// identity, we must instantiate it under app-level impersonation.
using (new ApplicationImpersonationContext()) {
return DataProtector.Create(dataProtectorTypeName, applicationName, purpose.PrimaryPurpose, purpose.SpecificPurposes);
}
};
// 删减验证factory的部分代码和try-catch
return factory; // we know at this point the factory is good
}
}
注意_machineKeySection的ApplicationName和DataProtectorType默认都是空字符串"",具体不细说,在这定义的:https://referencesource.microsoft.com/#System.Web/Configuration/MachineKeySection.cs,50
所以我们继续看DataProtector的代码:
public abstract class DataProtector
{
public static DataProtector Create(string providerClass,
string applicationName,
string primaryPurpose,
params string[] specificPurposes)
{
// Make sure providerClass is not null - Other parameters checked in constructor
if (null == providerClass)
throw new ArgumentNullException("providerClass");
// Create a DataProtector based on this type using CryptoConfig
return (DataProtector)CryptoConfig.CreateFromName(providerClass, applicationName, primaryPurpose, specificPurposes);
}
}
注意它唯一的引用CryptoConfig,已经属于.NET Core已经包含的范畴了,因此没必要继续深入追踪。
Purpose
注意一开始时,我们说到的Purpose,相关定义如下:
public class Purpose {
// ...有删减
public static readonly Purpose User_MachineKey_Protect = new Purpose("User.MachineKey.Protect");
internal Purpose AppendSpecificPurposes(IList<string> specificPurposes)
{
if (specificPurposes == null || specificPurposes.Count == 0)
{
return this;
}
string[] array = new string[SpecificPurposes.Length + specificPurposes.Count];
Array.Copy(SpecificPurposes, array, SpecificPurposes.Length);
specificPurposes.CopyTo(array, SpecificPurposes.Length);
return new Purpose(PrimaryPurpose, array);
}
// Returns a label and context suitable for passing into the SP800-108 KDF.
internal void GetKeyDerivationParameters(out byte[] label, out byte[] context) {
// The primary purpose can just be used as the label directly, since ASP.NET
// is always in full control of the primary purpose (it's never user-specified).
if (_derivedKeyLabel == null) {
_derivedKeyLabel = CryptoUtil.SecureUTF8Encoding.GetBytes(PrimaryPurpose);
}
// The specific purposes (which can contain nonce, identity, etc.) are concatenated
// together to form the context. The BinaryWriter class prepends each element with
// a 7-bit encoded length to guarantee uniqueness.
if (_derivedKeyContext == null) {
using (MemoryStream stream = new MemoryStream())
using (BinaryWriter writer = new BinaryWriter(stream, CryptoUtil.SecureUTF8Encoding)) {
foreach (string specificPurpose in SpecificPurposes) {
writer.Write(specificPurpose);
}
_derivedKeyContext = stream.ToArray();
}
}
label = _derivedKeyLabel;
context = _derivedKeyContext;
}
}
注意其PrimaryPurpose值为:"User.MachineKey.Protect"。
另外还需要记住这个GetKeyDerivationParameters方法,它将在接下来的SP800_108类中使用,它将PrimaryPurpose经过utf8编码生成label参数,然后用所有的SpecificPurposes通过二进制序列化,生成context参数。
原始代码链接:https://referencesource.microsoft.com/#System.Web/Security/Cryptography/Purpose.cs,6fd5fbe04ec71877
SP800_108
已经接近尾声了,我们知道一个字符串要转换为密钥,就必须经过一个安全的哈希算法。之前我们接触得最多的,是Rfc2898DeriveBytes,但它是为了保存密码而设计的。这里不需要这么复杂,因此…….NET另写了一个。
这个类代码非常长,但好在它所有内容都兼容.NET Core,因此可以直接复制粘贴。
它的目的是通过Purpose来生成密钥。有兴趣的读者可以了解一下其算法:https://referencesource.microsoft.com/#System.Web/Security/Cryptography/SP800_108.cs,38
收尾
关系图整理
我已经尽力将代码重点划出来,但仍然很复杂。这么多类,我最后理了一个关系图,用于了解其调用、依赖链:
MachineKey
Purpose
AspNetCryptoServiceProvider
MachineKeySection
MachineKeyCryptoAlgorithmFactory
CryptoAlgorithms
MachineKeyMasterKeyProvider
CryptographicKey
MachineKeyDataProtectorFactory
DataProtector
CryptoConfig
SP800_108
祖传代码
整理了这么久,没有点干货怎么能行?基于以上的整理,我写了一份“祖传代码”,可以直接拿来在.NET Core中使用。代码较长,约200行,已经上传到我的博客数据网站,各位可以自取:https://github.com/sdcb/blog-data/tree/master/2020/20200222-machinekey-in-dotnetcore
其实只要一行代码?
直到后来,我发现有人将这些功能封闭成了一个NuGet包:AspNetTicketBridge,只需“一行”代码,就能搞定所有这些功能:
// https://github.com/dmarlow/AspNetTicketBridge
string cookie = "你的Cookie内容";
string validationKey = "machineKey中的validationKey";
string decryptionKey = "machineKey中的decryptionKey";
OwinAuthenticationTicket ticket = MachineKeyTicketUnprotector.UnprotectCookie(cookie, decryptionKey, validationKey);
用LINQPad运行,结果如下(完美破解):

总结
喜欢的朋友请关注我的微信公众号:【DotNet骚操作】


浙公网安备 33010602011771号