396. Rotate Function
problem
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1).
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
solution
先遍历下标,然后遍历元素,性能没过关;嵌套次反过来呢?,
怎么嵌套大致都是O(n2),差别不大
class Solution(object):
def maxRotateFunction(self, A):
"""
:type A: List[int]
:rtype: int
"""
sums = []
length = len(A)
for i in range(length):
sum = 0
for index,item in enumerate(A):
sum += (index+i)%length * item
sums.append(sum)
if not len(sums):
sums.append(0)
return max(sums)
class Solution(object):
def maxRotateFunction(self, A):
"""
:type A: List[int]
:rtype: int
"""
length = len(A)
sums = [0]*length
for index,item in enumerate(A):
for offset in range(length):
sums[offset] += (index+offset)%length * item
if not len(sums):
sums.append(0)
return max(sums)
discuss
数学寻找关联,然后求解
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1]
= 0 * Bk[1] + 1 * Bk[2] + ... + (n-2) * Bk[n-1] + (n-1) * Bk[0]
Then,
F(k) - F(k-1) = Bk[1] + Bk[2] + ... + Bk[n-1] + (1-n)Bk[0]
= (Bk[0] + ... + Bk[n-1]) - nBk[0]
= sum - nBk[0]
Thus,
F(k) = F(k-1) + sum - nBk[0]
What is Bk[0]?
k = 0; B[0] = A[0];
k = 1; B[0] = A[len-1];
k = 2; B[0] = A[len-2];
...
int maxRotateFunction(int* A, int ASize) {
int i, last, sum,m;
if(ASize<=1) return 0;
last=0;
sum=0;
for(i=0;i<ASize;i++){
last += A[i]*i;
sum+=A[i];
}
m=last ;
for(i=ASize-1;i>=1;i--){
last += sum - (ASize*A[i]);
if (last > m) m= last;
}
return m;
}

浙公网安备 33010602011771号