第四章 启动技术---内存直接加载运行
一、内存直接加载运行
把DLL或者exe等PE文件从内存中直接加载到病毒木马的内存中去执行,不需要通过LoadLibrary等线程的API函数去操作,以此躲过杀毒软件的拦截检测。
假如程序需要动态调用DLL文件,内存加载运行技术可以把这些DLL作为资源插入到自己的程序中。此时直接在内存中加载运行即可,不需要再将DLL释放到本地。
二、PE文件结构
三、实现原理
内存直接加载运行技术的核心就是模拟PE加载器加载PE文件的过程,也就是对导入表、导出表以及重定位表的操作过程。
那么程序需要进行哪些操作便可以直接从内存中加载运行DLL或是exe文件呢?以加载DLL为例介绍。
首先就是要把DLL文件按照映像对齐大小映射到内存中,切不可直接将DLL文件数据存储到内存中。因为根据PE结构的基础知识可知,PE文件有两个对齐字段,一个是映像对齐大小SectionAlignment,另一个是文件对齐大小FileAlignment。其中,映像对齐大小是PE文件加载到内存中所用的对齐大小,而文件对齐大小是PE文件存储在本地磁盘所用的对齐大小。一般文件对齐大小会比映像对齐大小要小,这样文件会变小,以此节省磁盘空间。
然而,成功映射内存数据之后,在DLL程序中会存在硬编码数据,硬编码都是以默认的加载基址作为基址来计算的。由于DLL可以任意加载到其他进程空间中,所以DLL的加载基址并非固定不变。当改变加载基址的时候,硬编码也要随之改变,这样DLL程序才会计算正确。但是,如何才能知道需要修改哪些硬编码呢?换句话说,如何知道硬编码的位置?答案就藏在PE结构的重定位表中,重定位表记录的就是程序中所有需要修改的硬编码的相对偏移位置。
根据重定位表修改硬编码数据后,这只是完成了一半的工作。DLL作为一个程序,自然也会调用其他库函数,例如MessageBox。那么DLL如何知道MessageBox函数的地址呢?它只有获取正确的调用函数地址后,方可正确调用函数。PE结构使用导入表来记录PE程序中所有引用的函数及其函数地址。在DLL映射到内存之后,需要根据导入表中的导入模块和函数名称来获取调用函数的地址。若想从导入模块中获取导出函数的地址,最简单的方式是通过GetProcAddress函数来获取。但是为了避免调用敏感的WIN32 API函数而被杀软拦截检测,本书采用直接遍历PE结构导出表的方式来获取导出函数地址,这要求读者熟悉导出表的具体操作原理。
完成上述操作之后,DLL加载工作才算完成,接下来便是获取入口地址并跳转执行以便完成启动。
具体的实现流程总结如下。
首先,在DLL文件中,根据PE结构获取其加载映像的大小SizeOfImage,并根据SizeOfImage在自己的程序中申请可读、可写、可执行的内存,那么这块内存的首地址就是DLL的加载基址。
其次,根据DLL中的PE结构获取其映像对齐大小SectionAlignment,然后把DLL文件数据按照SectionAlignment复制到上述申请的可读、可写、可执行的内存中。
接下来,根据PE结构的重定位表,重新对重定位表进行修正。
然后,根据PE结构的导入表,加载所需的DLL,并获取导入函数的地址并写入导入表中。
接着,修改DLL的加载基址ImageBase。
最后,根据PE结构获取DLL的入口地址,然后构造并调用DllMain函数,实现DLL加载。
而exe文件相对于DLL文件实现原理唯一的区别就在于构造入口函数的差别,exe不需要构造DllMain函数,而是根据PE结构获取exe的入口地址偏移AddressOfEntryPoint并计算出入口地址,然后直接跳转到入口地址处执行即可。
要特别注意的是,对于exe文件来说,重定位表不是必需的,即使没有重定位表,exe也可正常运行。因为对于exe进程来说,进程最早加载的模块是exe模块,所以它可以按照默认的加载基址加载到内存。对于那些没有重定位表的程序,只能把它加载到默认的加载基址上。如果默认加载基址已被占用,则直接内存加载运行会失败。
三、编码实现(dll、这里编写32位程序)
dllload.exe
头文件MmLoadDll.h
#ifndef _MM_LOAD_DLL_H_
#define _MM_LOAD_DLL_H_
#include <Windows.h>
typedef BOOL(__stdcall* typedef_DllMain)(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved);
void ShowError(char* lpszText);
// 模拟LoadLibrary加载内存DLL文件到进程中
// lpData: 内存DLL文件数据的基址
// dwSize: 内存DLL文件的内存大小
// 返回值: 内存DLL加载到进程的加载基址
LPVOID MmLoadLibrary(LPVOID lpData, DWORD dwSize);
// 根据PE结构,获取PE文件加载到内存后的镜像大小
// lpData: 内存DLL文件数据的基址
// 返回值: 返回PE文件结构中IMAGE_NT_HEADERS.OptionalHeader.SizeOfImage值的大小
DWORD GetSizeOfImage(LPVOID lpData);
// 将内存DLL数据按SectionAlignment大小对齐映射到进程内存中
// lpData: 内存DLL文件数据的基址
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL MmMapFile(LPVOID lpData, LPVOID lpBaseAddress);
// 对齐SectionAlignment
// dwSize: 表示未对齐前内存的大小
// dwAlignment: 对齐大小值
// 返回值: 返回内存对齐之后的值
DWORD Align(DWORD dwSize, DWORD dwAlignment);
// 修改PE文件重定位表信息
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL DoRelocationTable(LPVOID lpBaseAddress);
// 填写PE文件导入表信息
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL DoImportTable(LPVOID lpBaseAddress);
// 修改PE文件加载基址IMAGE_NT_HEADERS.OptionalHeader.ImageBase
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL SetImageBase(LPVOID lpBaseAddress);
// 调用DLL的入口函数DllMain,函数地址即为PE文件的入口点IMAGE_NT_HEADERS.OptionalHeader.AddressOfEntryPoint
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL CallDllMain(LPVOID lpBaseAddress);
// 模拟GetProcAddress获取内存DLL的导出函数
// lpBaseAddress: 内存DLL文件加载到进程中的加载基址
// lpszFuncName: 导出函数的名字
// 返回值: 返回导出函数的的地址
LPVOID MmGetProcAddress(LPVOID lpBaseAddress, PCHAR lpszFuncName);
// 释放从内存加载的DLL到进程内存的空间
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL MmFreeLibrary(LPVOID lpBaseAddress);
#endif
MmLoadDll.cpp
#include "MmLoadDll.h"
#include<windows.h>
#include<stdio.h>
void ShowError(char* lpszText)
{
char szErr[MAX_PATH] = { 0 };
::wsprintf(szErr, "%s Error!\nError Code Is:%d\n", lpszText, ::GetLastError());
::MessageBox(NULL, szErr, "ERROR", MB_OK | MB_ICONERROR);
}
// 模拟LoadLibrary加载内存DLL文件到进程中
// lpData: 内存DLL文件数据的基址
// dwSize: 内存DLL文件的内存大小
// 返回值: 内存DLL加载到进程的加载基址
LPVOID MmLoadLibrary(LPVOID lpData, DWORD dwSize)
{
LPVOID lpBaseAddress = NULL;
printf("333333");
// 获取镜像大小
DWORD dwSizeOfImage = GetSizeOfImage(lpData);
// 在进程中开辟一个可读、可写、可执行的内存块
lpBaseAddress = VirtualAlloc(NULL, dwSizeOfImage, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
printf("4444");
if (NULL == lpBaseAddress)
{
ShowError("VirtualAlloc");
return NULL;
}
RtlZeroMemory(lpBaseAddress, dwSizeOfImage);
printf("5555");
// 将内存DLL数据按SectionAlignment大小对齐映射到进程内存中
if (FALSE == MmMapFile(lpData, lpBaseAddress))
{
ShowError("MmMapFile");
return NULL;
}
// 修改PE文件重定位表信息
if (FALSE == DoRelocationTable(lpBaseAddress))
{
ShowError("DoRelocationTable");
return NULL;
}
// 填写PE文件导入表信息
if (FALSE == DoImportTable(lpBaseAddress))
{
ShowError("DoImportTable");
return NULL;
}
//修改页属性。应该根据每个页的属性单独设置其对应内存页的属性。
//统一设置成一个属性PAGE_EXECUTE_READWRITE
DWORD dwOldProtect = 0;
if (FALSE == ::VirtualProtect(lpBaseAddress, dwSizeOfImage, PAGE_EXECUTE_READWRITE, &dwOldProtect))
{
ShowError("VirtualProtect");
return NULL;
}
// 修改PE文件加载基址IMAGE_NT_HEADERS.OptionalHeader.ImageBase
if (FALSE == SetImageBase(lpBaseAddress))
{
ShowError("SetImageBase");
return NULL;
}
// 调用DLL的入口函数DllMain,函数地址即为PE文件的入口点IMAGE_NT_HEADERS.OptionalHeader.AddressOfEntryPoint
if (FALSE == CallDllMain(lpBaseAddress))
{
ShowError("CallDllMain");
return NULL;
}
return lpBaseAddress;
}
// 根据PE结构,获取PE文件加载到内存后的镜像大小
// lpData: 内存DLL文件数据的基址
// 返回值: 返回PE文件结构中IMAGE_NT_HEADERS.OptionalHeader.SizeOfImage值的大小
DWORD GetSizeOfImage(LPVOID lpData)
{
DWORD dwSizeOfImage = 0;
PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)lpData;
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((ULONG32)pDosHeader + pDosHeader->e_lfanew);
dwSizeOfImage = pNtHeaders->OptionalHeader.SizeOfImage;
return dwSizeOfImage;
}
// 将内存DLL数据按SectionAlignment大小对齐映射到进程内存中
// lpData: 内存DLL文件数据的基址
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL MmMapFile(LPVOID lpData, LPVOID lpBaseAddress)
{
PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)lpData;
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((ULONG32)pDosHeader + pDosHeader->e_lfanew);
// 获取SizeOfHeaders的值: 所有头+节表头的大小
DWORD dwSizeOfHeaders = pNtHeaders->OptionalHeader.SizeOfHeaders;
// 获取节表的数量
WORD wNumberOfSections = pNtHeaders->FileHeader.NumberOfSections;
// 获取第一个节表头的地址
PIMAGE_SECTION_HEADER pSectionHeader = (PIMAGE_SECTION_HEADER)((DWORD)pNtHeaders + sizeof(IMAGE_NT_HEADERS));
// 加载 所有头+节表头的大小
RtlCopyMemory(lpBaseAddress, lpData, dwSizeOfHeaders);
// 对齐SectionAlignment循环加载节表
WORD i = 0;
LPVOID lpSrcMem = NULL;
LPVOID lpDestMem = NULL;
DWORD dwSizeOfRawData = 0;
for (i = 0; i < wNumberOfSections; i++)
{
if ((0 == pSectionHeader->VirtualAddress) ||
(0 == pSectionHeader->SizeOfRawData))
{
pSectionHeader++;
continue;
}
lpSrcMem = (LPVOID)((DWORD)lpData + pSectionHeader->PointerToRawData);
lpDestMem = (LPVOID)((DWORD)lpBaseAddress + pSectionHeader->VirtualAddress);
dwSizeOfRawData = pSectionHeader->SizeOfRawData;
::RtlCopyMemory(lpDestMem, lpSrcMem, dwSizeOfRawData);
pSectionHeader++;
}
return TRUE;
}
// 对齐SectionAlignment
// dwSize: 表示未对齐前内存的大小
// dwAlignment: 对齐大小值
// 返回值: 返回内存对齐之后的值
DWORD Align(DWORD dwSize, DWORD dwAlignment)
{
DWORD dwRet = 0;
DWORD i = 0, j = 0;
i = dwSize / dwAlignment;
j = dwSize % dwAlignment;
if (0 != j)
{
i++;
}
dwRet = i * dwAlignment;
return dwRet;
}
// 修改PE文件重定位表信息
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL DoRelocationTable(LPVOID lpBaseAddress)
{
/* 重定位表的结构:
// DWORD sectionAddress, DWORD size (包括本节需要重定位的数据)
// 例如 1000节需要修正5个重定位数据的话,重定位表的数据是
// 00 10 00 00 14 00 00 00 xxxx xxxx xxxx xxxx xxxx 0000
// ----------- ----------- ----
// 给出节的偏移 总尺寸=8+6*2 需要修正的地址 用于对齐4字节
// 重定位表是若干个相连,如果address 和 size都是0 表示结束
// 需要修正的地址是12位的,高4位是形态字,intel cpu下是3
*/
//假设NewBase是0x600000,而文件中设置的缺省ImageBase是0x400000,则修正偏移量就是0x200000
//注意重定位表的位置可能和硬盘文件中的偏移地址不同,应该使用加载后的地址
PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)lpBaseAddress;
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((ULONG32)pDosHeader + pDosHeader->e_lfanew);
PIMAGE_BASE_RELOCATION pLoc = (PIMAGE_BASE_RELOCATION)((unsigned long)pDosHeader + pNtHeaders->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress);
// 判断是否有 重定位表
if ((PVOID)pLoc == (PVOID)pDosHeader)
{
// 重定位表 为空
return TRUE;
}
while ((pLoc->VirtualAddress + pLoc->SizeOfBlock) != 0) //开始扫描重定位表
{
WORD* pLocData = (WORD*)((PBYTE)pLoc + sizeof(IMAGE_BASE_RELOCATION));
//计算本节需要修正的重定位项(地址)的数目
int nNumberOfReloc = (pLoc->SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION)) / sizeof(WORD);
for (int i = 0; i < nNumberOfReloc; i++)
{
// 每个WORD由两部分组成。高4位指出了重定位的类型,WINNT.H中的一系列IMAGE_REL_BASED_xxx定义了重定位类型的取值。
// 低12位是相对于VirtualAddress域的偏移,指出了必须进行重定位的位置。
/*
#ifdef _WIN64
if ((DWORD)(pLocData[i] & 0x0000F000) == 0x0000A000)
{
// 64位dll重定位,IMAGE_REL_BASED_DIR64
// 对于IA-64的可执行文件,重定位似乎总是IMAGE_REL_BASED_DIR64类型的。
ULONGLONG* pAddress = (ULONGLONG *)((PBYTE)pNewBase + pLoc->VirtualAddress + (pLocData[i] & 0x0FFF));
ULONGLONG ullDelta = (ULONGLONG)pNewBase - m_pNTHeader->OptionalHeader.ImageBase;
*pAddress += ullDelta;
}
#endif
*/
if ((DWORD)(pLocData[i] & 0x0000F000) == 0x00003000) //这是一个需要修正的地址
{
// 32位dll重定位,IMAGE_REL_BASED_HIGHLOW
// 对于x86的可执行文件,所有的基址重定位都是IMAGE_REL_BASED_HIGHLOW类型的。
DWORD* pAddress = (DWORD*)((PBYTE)pDosHeader + pLoc->VirtualAddress + (pLocData[i] & 0x0FFF));
DWORD dwDelta = (DWORD)pDosHeader - pNtHeaders->OptionalHeader.ImageBase;
*pAddress += dwDelta;
}
}
//转移到下一个节进行处理
pLoc = (PIMAGE_BASE_RELOCATION)((PBYTE)pLoc + pLoc->SizeOfBlock);
}
return TRUE;
}
// 填写PE文件导入表信息
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL DoImportTable(LPVOID lpBaseAddress)
{
PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)lpBaseAddress;
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((ULONG32)pDosHeader + pDosHeader->e_lfanew);
PIMAGE_IMPORT_DESCRIPTOR pImportTable = (PIMAGE_IMPORT_DESCRIPTOR)((DWORD)pDosHeader +
pNtHeaders->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);
// 循环遍历DLL导入表中的DLL及获取导入表中的函数地址
char* lpDllName = NULL;
HMODULE hDll = NULL;
PIMAGE_THUNK_DATA lpImportNameArray = NULL;
PIMAGE_IMPORT_BY_NAME lpImportByName = NULL;
PIMAGE_THUNK_DATA lpImportFuncAddrArray = NULL;
FARPROC lpFuncAddress = NULL;
DWORD i = 0;
while (TRUE)
{
if (0 == pImportTable->OriginalFirstThunk)
{
break;
}
// 获取导入表中DLL的名称并加载DLL
lpDllName = (char*)((DWORD)pDosHeader + pImportTable->Name);
hDll = ::GetModuleHandle(lpDllName);
if (NULL == hDll)
{
hDll = ::LoadLibrary(lpDllName);
if (NULL == hDll)
{
pImportTable++;
continue;
}
}
i = 0;
// 获取OriginalFirstThunk以及对应的导入函数名称表首地址
lpImportNameArray = (PIMAGE_THUNK_DATA)((DWORD)pDosHeader + pImportTable->OriginalFirstThunk);
// 获取FirstThunk以及对应的导入函数地址表首地址
lpImportFuncAddrArray = (PIMAGE_THUNK_DATA)((DWORD)pDosHeader + pImportTable->FirstThunk);
while (TRUE)
{
if (0 == lpImportNameArray[i].u1.AddressOfData)
{
break;
}
// 获取IMAGE_IMPORT_BY_NAME结构
lpImportByName = (PIMAGE_IMPORT_BY_NAME)((DWORD)pDosHeader + lpImportNameArray[i].u1.AddressOfData);
// 判断导出函数是序号导出还是函数名称导出
if (0x80000000 & lpImportNameArray[i].u1.Ordinal)
{
// 序号导出
// 当IMAGE_THUNK_DATA值的最高位为1时,表示函数以序号方式输入,这时,低位被看做是一个函数序号
lpFuncAddress = ::GetProcAddress(hDll, (LPCSTR)(lpImportNameArray[i].u1.Ordinal & 0x0000FFFF));
}
else
{
// 名称导出
lpFuncAddress = ::GetProcAddress(hDll, (LPCSTR)lpImportByName->Name);
}
// 注意此处的函数地址表的赋值,要对照PE格式进行装载,不要理解错了!!!
lpImportFuncAddrArray[i].u1.Function = (DWORD)lpFuncAddress;
i++;
}
pImportTable++;
}
return TRUE;
}
// 修改PE文件加载基址IMAGE_NT_HEADERS.OptionalHeader.ImageBase
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL SetImageBase(LPVOID lpBaseAddress)
{
PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)lpBaseAddress;
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((ULONG32)pDosHeader + pDosHeader->e_lfanew);
pNtHeaders->OptionalHeader.ImageBase = (ULONG32)lpBaseAddress;
return TRUE;
}
// 调用DLL的入口函数DllMain,函数地址即为PE文件的入口点IMAGE_NT_HEADERS.OptionalHeader.AddressOfEntryPoint
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL CallDllMain(LPVOID lpBaseAddress)
{
typedef_DllMain DllMain = NULL;
PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)lpBaseAddress;
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((ULONG32)pDosHeader + pDosHeader->e_lfanew);
DllMain = (typedef_DllMain)((ULONG32)pDosHeader + pNtHeaders->OptionalHeader.AddressOfEntryPoint);
// 调用入口函数,附加进程DLL_PROCESS_ATTACH
BOOL bRet = DllMain((HINSTANCE)lpBaseAddress, DLL_PROCESS_ATTACH, NULL);
if (FALSE == bRet)
{
ShowError("DllMain");
}
return bRet;
}
// 模拟GetProcAddress获取内存DLL的导出函数
// lpBaseAddress: 内存DLL文件加载到进程中的加载基址
// lpszFuncName: 导出函数的名字
// 返回值: 返回导出函数的的地址
LPVOID MmGetProcAddress(LPVOID lpBaseAddress, PCHAR lpszFuncName)
{
LPVOID lpFunc = NULL;
// 获取导出表
PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)lpBaseAddress;
PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((ULONG32)pDosHeader + pDosHeader->e_lfanew);
PIMAGE_EXPORT_DIRECTORY pExportTable = (PIMAGE_EXPORT_DIRECTORY)((DWORD)pDosHeader + pNtHeaders->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
// 获取导出表的数据
PDWORD lpAddressOfNamesArray = (PDWORD)((DWORD)pDosHeader + pExportTable->AddressOfNames);
PCHAR lpFuncName = NULL;
PWORD lpAddressOfNameOrdinalsArray = (PWORD)((DWORD)pDosHeader + pExportTable->AddressOfNameOrdinals);
WORD wHint = 0;
PDWORD lpAddressOfFunctionsArray = (PDWORD)((DWORD)pDosHeader + pExportTable->AddressOfFunctions);
DWORD dwNumberOfNames = pExportTable->NumberOfNames;
DWORD i = 0;
// 遍历导出表的导出函数的名称, 并进行匹配
for (i = 0; i < dwNumberOfNames; i++)
{
lpFuncName = (PCHAR)((DWORD)pDosHeader + lpAddressOfNamesArray[i]);
if (0 == ::lstrcmpi(lpFuncName, lpszFuncName))
{
// 获取导出函数地址
wHint = lpAddressOfNameOrdinalsArray[i];
lpFunc = (LPVOID)((DWORD)pDosHeader + lpAddressOfFunctionsArray[wHint]);
break;
}
}
printf("11111112222222333333333");
return lpFunc;
}
// 释放从内存加载的DLL到进程内存的空间
// lpBaseAddress: 内存DLL数据按SectionAlignment大小对齐映射到进程内存中的内存基址
// 返回值: 成功返回TRUE,否则返回FALSE
BOOL MmFreeLibrary(LPVOID lpBaseAddress)
{
BOOL bRet = FALSE;
if (NULL == lpBaseAddress)
{
return bRet;
}
bRet = VirtualFree(lpBaseAddress, 0, MEM_RELEASE);
lpBaseAddress = NULL;
return bRet;
}
RunDllnMem_Test.cpp
// RunDllInMem_Test.cpp : 定义控制台应用程序的入口点。
//
#include<tchar.h>
#include<stdio.h>
#include "MmLoadDll.h"
int _tmain(int argc, _TCHAR* argv[])
{
char szFileName[MAX_PATH] = "TestDll.dll";
// 打开DLL文件并获取DLL文件大小
HANDLE hFile = CreateFile(szFileName, GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_ARCHIVE, NULL);
printf("1111");
if (INVALID_HANDLE_VALUE == hFile)
{
ShowError("CreateFile");
return 1;
}
DWORD dwFileSize = GetFileSize(hFile, NULL);
// 申请动态内存并读取DLL到内存中
BYTE* lpData = new BYTE[dwFileSize];
if (NULL == lpData)
{
ShowError("new");
return 2;
}
DWORD dwRet = 0;
ReadFile(hFile, lpData, dwFileSize, &dwRet, NULL);
// 将内存DLL加载到程序中
LPVOID lpBaseAddress = MmLoadLibrary(lpData, dwFileSize);
printf("2222");
if (NULL == lpBaseAddress)
{
ShowError("MmLoadLibrary");
return 3;
}
printf("DLL加载成功\n");
// 获取DLL导出函数并调用
typedef BOOL(*typedef_ShowMessage)(char* lpszText, char* lpszCaption);
typedef_ShowMessage ShowMessage = (typedef_ShowMessage)MmGetProcAddress(lpBaseAddress, "ShowMessage");
if (NULL == ShowMessage)
{
ShowError("MmGetProcAddress");
return 4;
}
ShowMessage("I am Demon·Gan\n", "Who Are You");
// 释放从内存加载的DLL
BOOL bRet = MmFreeLibrary(lpBaseAddress);
if (FALSE == bRet)
{
ShowError("MmFreeLirbary");
}
// 释放
delete[] lpData;
lpData = NULL;
CloseHandle(hFile);
system("pause");
return 0;
}
TestDll.dll
dllmain.cpp
// dllmain.cpp : 定义 DLL 应用程序的入口点。
#include "framework.h"
BOOL APIENTRY DllMain( HMODULE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved
)
{
switch (ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}
TestDll.cpp
#include<windows.h>
extern "C" __declspec(dllexport) BOOL ShowMessage(char* lpszText, char* lpszCaption)
{
MessageBox(NULL, lpszText, lpszCaption, MB_OK);
return TRUE;
}


浙公网安备 33010602011771号