批量数据处理,next_batch()
# 随机取batch_size个训练样本  
import numpy as np
#train_data训练集特征,train_target训练集对应的标签,batch_size
def next_batch(train_data, train_target, batch_size):  
    #打乱数据集
    index = [ i for i in range(0,len(train_target)) ]  
    np.random.shuffle(index);  
    #建立batch_data与batch_target的空列表
    batch_data = []; 
    batch_target = [];  
    #向空列表加入训练集及标签
    for i in range(0,batch_size):  
        batch_data.append(train_data[index[i]]);  
        batch_target.append(train_target[index[i]])  
    return batch_data, batch_target #返回
————————————————
版权声明:本文为CSDN博主「黄鑫huangxin」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_33373858/article/details/83012236
 
                    
                
 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号