会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
飒白
博客园
首页
新随笔
联系
管理
上一页
1
2
3
下一页
2020年4月19日
python批量添加hexo文章封面
摘要: ❝ 本文需要工具: 「excel」 「python3.x」 ❞ 今天突然觉得,我的博客的文章更新这么多了竟然还没有一个封面,觉得首页相当低调了… 首页 正好皮肤带有文章封面功能,所以我觉得要将文章批量加上文章推图! 1.寻找图片 推荐大家一个网站:https://www.pexels.com/ 找到
阅读全文
posted @ 2020-04-19 16:36 飒白
阅读(798)
评论(0)
推荐(0)
2020年4月17日
[一起面试AI]NO.9 如何判断函数凸或非凸
摘要: 首先定义凸集,如果x,y属于某个集合M,并且所有的θx+(1-θ)f(y)也属于M,那么M为一个凸集。如果函数f的定义域是凸集,并且满足 f(θx+(1-θ)y)≤θf(x)+(1-θ)f(y) 则该函数为凸函数。 如果函数存在二阶导并且为正,或者多元函数的Hessian矩阵半正定则均为凸函数。 「
阅读全文
posted @ 2020-04-17 12:11 飒白
阅读(1148)
评论(0)
推荐(0)
2020年4月16日
[一起面试AI]NO.8 在机器学习中,常用的损失函数有哪些?
摘要: 「(1) 0 1 loss」 记录分类错误的次数。 「(2)Hinge Loss」 最常用在SVM中「最大优化间隔分类」中,对可能的输出t=±1和分类器分数y,预测值y的hinge loss定义如下: L(y)=max(0.1 t y) 「(3)Log Loss对数损失」 对于「对数函数」,由于其具
阅读全文
posted @ 2020-04-16 08:45 飒白
阅读(337)
评论(0)
推荐(0)
2020年4月15日
[一起面试AI]NO.7 常用梯度下降法与优化器都有什么?
摘要: 常用梯度下降法与优化器 机器学习中大部分为优化问题,而绝大部分优化问题都可以使用「梯度下降法」处理。 梯度下降法的数学原理是函数沿着梯度方向具有「最大变化率」,那么在优化目标函数时沿着负梯度方向去减少函数值,以此达到优化目标。 通过迭代的方式寻找「最优参数」,最优参数是指是目标函数达到最小值时的参数
阅读全文
posted @ 2020-04-15 07:36 飒白
阅读(779)
评论(0)
推荐(0)
2020年4月14日
[一起面试AI]NO.6 偏差与方差
摘要: 偏差度量了学习算法的期望与真实结果的偏差,刻画了算法本身的「拟合能力」,方差度量了同样大小的训练集的变动所导致的学习性能的变化。 偏差与方差 偏差用于描述模型的拟合能力,方差用来描述模型的稳定性。 当训练度不足的时候,偏差主导模型的泛化误差; 当训练进入后期,模型的拟合能力增强,方差主导模型的泛化误
阅读全文
posted @ 2020-04-14 07:53 飒白
阅读(416)
评论(0)
推荐(0)
2020年4月13日
[一起面试AI]NO.5过拟合、欠拟合与正则化是什么?
摘要: Q1 过拟合与欠拟合的区别是什么,什么是正则化 欠拟合指的是模型不能够再训练集上获得足够低的「训练误差」,往往由于特征维度过少,导致拟合的函数无法满足训练集,导致误差较大。 过拟合指的是模型训练误差与测试误差之间差距过大;具体来说就是模型在训练集上训练过度,导致泛化能力过差。 「所有为了减少测试误差
阅读全文
posted @ 2020-04-13 20:02 飒白
阅读(451)
评论(0)
推荐(0)
[一起面试AI]NO.4特征工程主要包括什么?
摘要: Q1 数据预处理主要包括什么 「无量纲化」 无量纲化主要解决数据的「量纲不同」的问题,使不同的数据转换到「同一」规格,常见的方法有「标准化」和「区间缩放法」。标准化的假设前提是特征值服从「正态分布」。区间放缩法利用了「边界值」信息,将特征的取值区间缩放到某个「特点」的范围,列如[0,1]等。 (1)
阅读全文
posted @ 2020-04-13 11:09 飒白
阅读(357)
评论(0)
推荐(0)
[一起面试AI]NO.3分类问题常用的性能度量指标有哪些
摘要: 常用的性能度量指标有:「精确率」、「召回率」、「F1」、「TPR」、「FPR」。 预测为真 预测为假 真实为真 TP(true positive) FN(false negative) 真实为假 FP(false positive) TN(true negative) 「精确率」Precision=
阅读全文
posted @ 2020-04-13 11:07 飒白
阅读(554)
评论(0)
推荐(0)
[一起面试AI]NO.2回归问题常用的性能度量指标有哪些
摘要: 1)「均方误差」 是反映估计值与被估计量之间差异程度的一种度量。 2)「RMSE均方根误差」 观测值与真值偏差的平方和与观测次数m比值的平方根,用来衡量观测值同真值之间的偏差。 3)「SSE和方误差」 4)「MAE」 直接计算模型输出与真实值之间的平均绝对误差 5)「MAPE」 不仅考虑预测值与真实
阅读全文
posted @ 2020-04-13 11:06 飒白
阅读(455)
评论(0)
推荐(0)
[一起面试AI]NO.1机器学习简介
摘要: Q1 机器学习如何分类 按照任务类型可分为: 「回归模型」:例如预测明天的股价。「分类模型」:将样本分为两类或者多类。「结构化学习模型」:输出的不是向量而是其他「结构。」 按照学习理论可分为: 「监督学习」:学习的样本「全部」具有标签,训练网络得到一个最优模型。「无监督学习」:训练的样本「全部」无标
阅读全文
posted @ 2020-04-13 10:59 飒白
阅读(209)
评论(0)
推荐(0)
上一页
1
2
3
下一页
公告