python基础—迭代器和生成器

迭代器和生成器

1.前引

假如我现在有一个列表l=['a','b','c','d','e'],我想取列表中的内容,有几种方式?

首先,我可以通过索引取值l[0],其次我们是不是还可以用for循环来取值呀?

你有没有仔细思考过,用索引取值和for循环取值是有着微妙区别的。

如果用索引取值,你可以取到任意位置的值,前提是你要知道这个值在什么位置。

如果用for循环来取值,我们把每一个值都取到,不需要关心每一个值的位置,因为只能顺序的取值,并不能跳过任何一个直接去取其他位置的值。

但你有没有想过,我们为什么可以使用for循环来取值?

for循环内部是怎么工作的呢?

2.python中for循环的机制

要了解for循环是怎么回事儿,咱们还是要从代码的角度出发。

首先,我们对一个列表进行for循环。

for i in [1,2,3,4]:  
    print(i)

上面的代码肯定没有问题,我们换一种情况试试,来循环数字1234.

for i in 1234
    print(i) 

结果:
Traceback (most recent call last):
  File "test.py", line 4, in <module>
    for i in 1234:
TypeError: 'int' object is not iterable

看,报错了!报了什么错呢?“TypeError: 'int' object is not iterable”,说int类型不是一个iterable,那这个iterable是个啥?

3.迭代器和可迭代协议

什么叫做迭代

现在,我们已经获得了一个新线索,有一个叫做“可迭代的”概念

首先,我们从报错来分析,好像之所以1234不可以for循环,是因为它不可迭代。那么如果“可迭代”,就应该可以被for循环了。

这个我们知道呀,字符串、列表、元组、字典、集合都可以被for循环,说明他们都是可迭代的

我们怎么来证明这一点呢?

from collections import Iterable
                             
l = [1,2,3,4]                
t = (1,2,3,4)                
d = {1:2,3:4}                
s = {1,2,3,4}                
                             
print(isinstance(l,Iterable))
print(isinstance(t,Iterable))
print(isinstance(d,Iterable))
print(isinstance(s,Iterable))

结合我们使用for循环取值的现象,再从字面上理解一下,其实迭代就是我们刚刚说的,可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代

可迭代协议

能被for循环的对象,就是可迭代对象,那我们怎么知道一个对象能不能被for循环呢?

其实某一个数据类型能被for循环,本质上是因为满足一个要求,这个要求就是可迭代协议

可迭代协议:对象内部实现了__iter__方法。

可迭代对象内部方法
 总结一下我们现在所知道的:可以被for循环的都是可迭代的,要想可迭代,内部必须有一个__iter__方法。

接着分析,__iter__方法做了什么事情呢?

print([1,2].__iter__())

结果
<list_iterator object at 0x1024784a8>

我们执行了列表[1,2]的__iter__方法,获得了一个list_iterator,我们得到了一个新的名词——iterator

这个就是计算机中的专属名词,叫迭代器。

迭代器协议

既什么叫“可迭代”之后,又一个历史新难题,什么叫“迭代器”?

虽然我们不知道什么叫迭代器,但是我们现在已经有一个迭代器了,这个迭代器是一个列表的迭代器。

我们来看看这个列表的迭代器比起列表来说实现了哪些新方法,这样就能揭开迭代器的神秘面纱了吧?

'''
dir([1,2].__iter__())是列表迭代器中实现的所有方法,dir([1,2])是列表中实现的所有方法,都是以列表的形式返回给我们的,为了看的更清楚,我们分别把他们转换成集合,
然后取差集。
'''
#print(dir([1,2].__iter__()))
#print(dir([1,2]))
print(set(dir([1,2].__iter__()))-set(dir([1,2])))

结果:
{'__length_hint__', '__next__', '__setstate__'}

我们看到在列表迭代器中多了三个方法,那么这三个方法都分别做了什么事呢?

iter_l = [1,2,3,4,5,6].__iter__()
#获取迭代器中元素的长度
print(iter_l.__length_hint__())
#根据索引值指定从哪里开始迭代
print('*',iter_l.__setstate__(4))
#一个一个的取值
print('**',iter_l.__next__())
print('***',iter_l.__next__())

这三个方法中,能让我们一个一个取值的就是next方法

在for循环中,就是在内部调用了一个__next__方法才能一个接一个取到值,

我们用next方法写一个不依赖for的遍历

l = [1,2,3,4]
l_iter = l.__iter__()
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)

我们发现,这段代码会报错,这是因为我们一直next把迭代器这两年个的元素取完了,此时如果我们再取,则会抛出一个异常StopIteration,告诉我们,列表中已经没有有效的元素了。

这个时候,我们就要使用异常处理机制来把这个异常处理掉。

l = [1,2,3,4]
l_iter = l.__iter__()
while True:
    try:
        item = l_iter.__next__()
        print(item)
    except StopIteration:
        break

这段代码就是for循环运行的本质,我们从l_iter中一个一个取值,l_iter就是一个迭代器

迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。

range返回的就是一个可迭代对象

print('__next__' in dir(range(12)))  #查看'__next__'是不是在range()方法执行之后内部是否有__next__
print('__iter__' in dir(range(12)))  #查看'__next__'是不是在range()方法执行之后内部是否有__next__

from collections import Iterator
print(isinstance(range(100000000),Iterator))  #验证range执行之后得到的结果不是一个迭代器

为什么要使用for循环

l=[1,2,3]

index=0
while index < len(l):
    print(l[index])
    index+=1

#要毛线for循环,要毛线可迭代,要毛线迭代器

4.生成器

我们知道的迭代器有两种:一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的,迭代器有的好处是可以节省内存。

如果在某些情况下,我们也需要节省内存,就只能自己写。我们自己写的这个能实现迭代器功能的东西就叫生成器。

定义:在Python中,一边循环一边计算的机制,称为生成器:generator。

特点:满足迭代器协议,使用生成器函数或者生成器表达式可以获得生成器。

Python中提供的生成器:

1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行

2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表

生成器Generator:

本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)

特点:惰性运算,开发者自定义

生成器函数

生成器函数的认识:一个包含yield关键字的函数就是一个生成器函数。

import time
def genrator_fun1():
    a = 1
    print('现在定义了a变量')
    yield a
    b = 2
    print('现在又定义了b变量')
    yield b

g1 = genrator_fun1()
print('g1 : ',g1)       #打印g1可以发现g1就是一个生成器
print('-'*20)   #我是华丽的分割线
print(next(g1))
time.sleep(1)   #sleep一秒看清执行过程
print(next(g1))

初识生成器函数

生成器的优点:

  1.节省内存
  2.python使用生成器对延迟操作提供了支持,所谓延迟操作,是指在需要的时候采取产生结果,而不是立即产生结果。

yield关键字:

  1.将函数变成生成器函数

  2.返回函数的结果

  3.保存/挂机函数的运行状态,以便下次继续往后执行

  4.接收send方法传入的值

  5.与return的区别,yield在函数中可以多次执行

send方法:接受用户输入的值,并传给yield,可以通过yield赋值给变量

def generator():
    print(123)
    content = yield 1
    print('=======',content)
    print(456)
    yield2

g = generator()
ret = g.__next__()
print('***',ret)
ret = g.send('hello')   #send的效果和next一样
print('***',ret)

#send 获取下一个值的效果和next基本一致
#只是在获取下一个值的时候,给上一yield的位置传递一个数据
#使用send的注意事项
    # 第一次使用生成器的时候 是用next获取下一个值
    # 最后一个yield不能接受外部的值

yield from方法:从一个可迭代对象中获得生成器的返回值

def gen1():
    for c in 'AB':
        yield c
    for i in range(3):
        yield i

print(list(gen1()))

def gen2():
    yield from 'AB'
    yield from range(3)

print(list(gen2()))

yield from

5.列表推导式和生成器表达式

峰哥与alex的故事

总结:

1.把列表解析的[]换成()得到的就是生成器表达式

2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存

3.Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,所以,我们可以直接这样计算一系列值的和:

sum(x ** 2 for x in range(4))

推导式的套路

variable = [out_exp_res for out_exp in input_list if out_exp == 2]
  out_exp_res:  列表生成元素表达式,可以是有返回值的函数。
  for out_exp in input_list:  迭代input_list将out_exp传入out_exp_res表达式中。
  if out_exp == 2:  根据条件过滤哪些值可以。

列表推导式

multiples = [i for i in range(30) if i % 3 is 0]
print(multiples)
# Output: [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

字典推导式

mcase = {'a': 10, 'b': 34}
mcase_frequency = {mcase[k]: k for k in mcase}
print(mcase_frequency)

集合推导式

squared = {x**2 for x in [1, -1, 2]}
print(squared)
# Output: set([1, 4])

注:元组没有推导式,元组类型的推导式就是生成器表达式。

posted @ 2019-03-22 09:25  ryxiong728  阅读(272)  评论(0编辑  收藏  举报