python基础

python基础

数据类型和变量

Python支持多种数据类型,在计算机内部,可以把任何数据都看成一个“对象”,而变量就是在程序中用来指向这些数据对象的,对变量赋值就是把数据和变量给关联起来。

对变量赋值x = y是把变量x指向真正的对象,该对象是变量y所指向的。随后对变量y的赋值不影响变量x的指向。

注意:Python的整数没有大小限制,而某些语言的整数根据其存储长度是有大小限制的,例如Java对32位整数的范围限制在-2147483648-2147483647

Python的浮点数也没有大小限制,但是超出一定范围就直接表示为inf(无限大)。

字符串和编码

Python 3的字符串使用Unicode,直接支持多语言。

strbytes互相转换时,需要指定编码。最常用的编码是UTF-8。Python当然也支持其他编码方式,比如把Unicode编码成GB2312

>>> '中文'.encode('gb2312')
b'\xd6\xd0\xce\xc4'

但这种方式纯属自找麻烦,如果没有特殊业务要求,请牢记仅使用UTF-8编码。

格式化字符串的时候,可以用Python的交互式环境测试,方便快捷。

使用list和tuple

list和tuple是Python内置的有序集合,一个可变,一个不可变。根据需要来选择使用它们。

条件判断

条件判断可以让计算机自己做选择,Python的if...elif...else很灵活。

条件判断从上向下匹配,当满足条件时执行对应的块内语句,后续的elif和else都不再执行。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# 注意:
# input()返回的是字符串
# 必须通过int()将字符串转换为整数
# 才能用于数值比较:
age = int(input('Input your age: '))

if age >= 18:
    print('adult')
elif age >= 6:
    print('teenager')
else:
    print('kid')

循环

循环是让计算机做重复任务的有效的方法。

break语句可以在循环过程中直接退出循环,而continue语句可以提前结束本轮循环,并直接开始下一轮循环。这两个语句通常都必须配合if语句使用。

要特别注意,不要滥用breakcontinue语句。breakcontinue会造成代码执行逻辑分叉过多,容易出错。大多数循环并不需要用到breakcontinue语句,许多情况下都可以通过改写循环条件或者修改循环逻辑,去掉breakcontinue语句。

有些时候,如果代码写得有问题,会让程序陷入“死循环”,也就是永远循环下去。这时可以用Ctrl+C退出程序,或者强制结束Python进程。

使用dict和set

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

函数

调用函数

调用Python的函数,需要根据函数定义,传入正确的参数。如果函数调用出错,一定要学会看错误信息,所以英文很重要!

定义函数

定义函数时,需要确定函数名和参数个数;

如果有必要,可以先对参数的数据类型做检查;

函数体内部可以用return随时返回函数结果;

函数执行完毕也没有return语句时,自动return None

函数可以同时返回多个值,但其实就是一个tuple。

函数的参数

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,程序运行时会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args是可变参数,args接收的是一个tuple;

**kw是关键字参数,kw接收的是一个dict。

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入:func(1, 2, 3),又可以先组装list或tuple,再通过*args传入:func(*(1, 2, 3))

关键字参数既可以直接传入:func(a=1, b=2),又可以先组装dict,再通过**kw传入:func(**{'a': 1, 'b': 2})

使用*args**kw是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

命名的关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。

定义命名的关键字参数在没有可变参数的情况下不要忘了写分隔符*,否则定义的将是位置参数。

递归函数

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

高级特性

切片

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

迭代

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

列表生成式

例子
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

运用列表生成式,可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁。

生成器

generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

请注意区分普通函数和generator函数,普通函数调用直接返回结果:

>>> r = abs(6)
>>> r
6

generator函数的调用实际返回一个generator对象:

>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>

[源码]:https://github.com/michaelliao/learn-python3/blob/master/samples/advance/do_generator.py

迭代器

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

函数式编程

高阶函数

map/reduce

利用mapreduce编写一个str2float函数,把字符串'123.456'转换成浮点数123.456

# coding=utf-8
from functools import reduce


def str2float(s):
    DIGITS = {
        '0': 0,
        '1': 1,
        '2': 2,
        '3': 3,
        '4': 4,
        '5': 5,
        '6': 6,
        '7': 7,
        '8': 8,
        '9': 9
    }

    def char2num(s):
        return DIGITS[s]

    s_int = s.split('.')[0]
    s_frac = s.split('.')[1]
    return reduce(lambda x, y: x * 10 + y, map(char2num, s_int)) + reduce(
        lambda x, y: x * 0.1 + y, map(char2num, s_frac[::-1])) / 10


print('str2float(\'123.456\') =', str2float('123.456'))
if abs(str2float('123.456') - 123.456) < 0.00001:
    print('测试成功!')
else:
    print('测试失败!')

filter

filter()的作用是从一个序列中筛出符合条件的元素。由于filter()使用了惰性计算,所以只有在取filter()结果的时候,才会真正筛选并每次返回下一个筛出的元素。

返回函数

返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。

使用闭包时,对外层变量赋值前,需要先使用nonlocal声明该变量不是当前函数的局部变量。

一个函数可以返回一个计算结果,也可以返回一个函数。

返回一个函数时,牢记该函数并未执行,返回函数中不要引用任何可能会变化的变量。

匿名函数

Python对匿名函数的支持有限,只有一些简单的情况下可以使用匿名函数。

装饰器

装饰器写的对入门者有难度,还未掌握,视频:https://www.bilibili.com/video/BV1Vv411x7hj?p=1

在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。

decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。

偏函数

当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。

模块

自己创建模块时要注意命名,不能和Python自带的模块名称冲突。例如,系统自带了sys模块,自己的模块就不可命名为sys.py,否则将无法导入系统自带的sys模块。

模块是一组Python代码的集合,可以使用其他模块,也可以被其他模块使用。

创建自己的模块时,要注意:

  • 模块名要遵循Python变量命名规范,不要使用中文、特殊字符;
  • 模块名不要和系统模块名冲突,最好先查看系统是否已存在该模块,检查方法是在Python交互环境执行import abc,若成功则说明系统存在此模块。

使用模块

posted @ 2023-01-16 17:25  simonqaq  阅读(62)  评论(0)    收藏  举报