题解:P13339 [EGOI 2025] 礼品盒
注意到:若一支队伍的人数大于等于 \(3\),则除第一个人与最后一个人以外,其他人必定会被跳过。这是因为只能跳过一段区间,如果一个中间位置的人没被跳过,那么要么她前面的所有人都没有被跳过,要么她后面的所有人都没有被跳过,这样的话必定有与她同队的人也获得奖品,这个队伍就获得至少两个奖品了。
对于区间 \(I_1=[l_1,r_1],I_2=[l_2,r_2]\),我们定义:
\[\operatorname{merge}(I_1,I_2)=[\min\{l_1,l_2\},\max\{r_1,r_2\}]
\]
即为删掉 \(I_1,I_2\) 所有元素所需的最短区间。
根据上面的结论,每个至少 \(3\) 个人的队伍都有一段必须要删除的区间,将它们 \(\operatorname{merge}\) 起来就得到了整体中必须要删除的区间 \([ql,qr]\)。
把 \([ql,qr]\) 的人都删除,剩余序列中每个队伍的人数都不超过 \(2\)。考虑对每个位置 \(l\),求出最小的 \(r\),使得删除 \([l,r]\) 之后每个队伍的人数都不超过 \(1\),可以双指针维护。对于求出的每个 \([l,r]\),实际需要删除的区间为 \(\operatorname{merge}([ql,qr],[l,r])\),在所有这些区间中取最短的即为答案。
时间复杂度 \(O(n)\)。
//By: OIer rui_er
#include <bits/stdc++.h>
#define rep(x, y, z) for(int x = (y); x <= (z); ++x)
#define per(x, y, z) for(int x = (y); x >= (z); --x)
#define debug(format...) fprintf(stderr, format)
#define fileIO(s) do {freopen(s".in", "r", stdin); freopen(s".out", "w", stdout);} while(false)
#define endl '\n'
using namespace std;
typedef long long ll;
mt19937 rnd(std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count());
int randint(int L, int R) {
uniform_int_distribution<int> dist(L, R);
return dist(rnd);
}
template<typename T> void chkmin(T& x, T y) {if(y < x) x = y;}
template<typename T> void chkmax(T& x, T y) {if(x < y) x = y;}
template<int mod>
inline unsigned int down(unsigned int x) {
return x >= mod ? x - mod : x;
}
template<int mod>
struct Modint {
unsigned int x;
Modint() = default;
Modint(unsigned int x) : x(x) {}
friend istream& operator>>(istream& in, Modint& a) {return in >> a.x;}
friend ostream& operator<<(ostream& out, Modint a) {return out << a.x;}
friend Modint operator+(Modint a, Modint b) {return down<mod>(a.x + b.x);}
friend Modint operator-(Modint a, Modint b) {return down<mod>(a.x - b.x + mod);}
friend Modint operator*(Modint a, Modint b) {return 1ULL * a.x * b.x % mod;}
friend Modint operator/(Modint a, Modint b) {return a * ~b;}
friend Modint operator^(Modint a, int b) {Modint ans = 1; for(; b; b >>= 1, a *= a) if(b & 1) ans *= a; return ans;}
friend Modint operator~(Modint a) {return a ^ (mod - 2);}
friend Modint operator-(Modint a) {return down<mod>(mod - a.x);}
friend Modint& operator+=(Modint& a, Modint b) {return a = a + b;}
friend Modint& operator-=(Modint& a, Modint b) {return a = a - b;}
friend Modint& operator*=(Modint& a, Modint b) {return a = a * b;}
friend Modint& operator/=(Modint& a, Modint b) {return a = a / b;}
friend Modint& operator^=(Modint& a, int b) {return a = a ^ b;}
friend Modint& operator++(Modint& a) {return a += 1;}
friend Modint operator++(Modint& a, int) {Modint x = a; a += 1; return x;}
friend Modint& operator--(Modint& a) {return a -= 1;}
friend Modint operator--(Modint& a, int) {Modint x = a; a -= 1; return x;}
friend bool operator==(Modint a, Modint b) {return a.x == b.x;}
friend bool operator!=(Modint a, Modint b) {return !(a == b);}
};
const int N = 5e5 + 5;
int t, n, a[N], cnt[N], rem[N];
vector<int> vec[N];
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> t >> n;
rep(i, 0, n - 1) cin >> a[i];
rep(i, 0, n - 1) vec[a[i]].push_back(i);
int ql = n, qr = -1;
rep(i, 0, t - 1) {
int tot = vec[i].size();
if(tot > 2) {
int ul = vec[i][1], ur = vec[i][tot - 2];
chkmin(ql, ul);
chkmax(qr, ur);
}
}
rep(i, ql, qr) a[i] = -1;
rep(i, 0, n - 1) if(a[i] != -1) ++cnt[a[i]];
int l = 0, r = -1, now = 0, ansl = -1, ansr = n;
rep(i, 0, t - 1) if((rem[i] = cnt[i]) <= 1) ++now;
while(l < n) {
while(r + 1 < n && now < t) {
++r;
if(a[r] != -1 && rem[a[r]]-- == 2) ++now;
}
if(now < t) break;
int ul = min(l, ql), ur = max(r, qr);
if(ur - ul + 1 < ansr - ansl + 1) {
ansl = ul;
ansr = ur;
}
if(a[l] != -1 && ++rem[a[l]] == 2) --now;
++l;
}
cout << ansl << " " << ansr << endl;
return 0;
}

浙公网安备 33010602011771号