CSS3 transform 2D实验(1)
这东西在各浏览器的差异性真大,叫人怎么整合与测试啊!
$.require("ready,css",function(){// mass Framework by 司徒正美
var $el = $("#test")
var matrix = $el.css("transform","rotate(90deg)").data("matrix",void 0, true)
//打印浏览器使用getComputedStyle得到结果
$.log($el.css("transform"))
//打印经过$.Matrix处理过的结果
$.log( matrix.get2D() );
//分解原始数值,得到a,b,c,e,tx,ty属性,以及返回一个包含x,y,scaleX,scaleY,skewX,skewY,rotation的对象
matrix.decompose2D();
$.log(matrix.a)
$.log(matrix.b)
$.log(matrix.c)
$.log(matrix.d)
$.log(matrix.tx)
$.log(matrix.ty);
});
下面测试结果
//FF12 matrix(0, 1, -1, 0, 0px, 0px) matrix(0,-1,1,0,0,0) 0 1 -1 0 0 0 //chrome20 matrix(0.0000000000000002220446049250313, 1, -1, 0.0000000000000002220446049250313, 0, 0) matrix(0,-1,1,0,0,0) 0 1 -1 0 0 0 //opera11.62 matrix(0, 1, -1, 0, 0, 0) matrix(0,-1,1,0,0,0) 0 1 -1 0 0 0 //safari5.1.5 matrix(0.0000000000000002220446049250313, 1, -1, 0.0000000000000002220446049250313, 0, 0) matrix(0,-1,1,0,0,0) 0 1 -1 0 0 0
一个放弃的矩阵类:
//http://extremelysatisfactorytotalitarianism.com/blog/?p=1002
//http://someguynameddylan.com/lab/transform-origin-in-internet-explorer.php
//优化HTML5应用的体验细节,例如全屏的处理与支持,横屏的响应,图形缩放的流畅性和不失真,点触的响应与拖曳,Websocket的完善
//关于JavaScript中计算精度丢失的问题 http://rockyee.iteye.com/blog/891538
function toFixed(d){
return d > -0.0000001 && d < 0.0000001 ? 0 : /e/.test(d+"") ? d.toFixed(7) : d
}
function rad(value) {
if(isFinite(value)) {
return parseFloat(value);
}
if(~value.indexOf("deg")) {//圆角制。
return parseInt(value,10) * (Math.PI / 180);
} else if (~value.indexOf("grad")) {//梯度制。一个直角的100等分之一。一个圆圈相当于400grad。
return parseInt(value,10) * (Math.PI/200);
}//弧度制,360=2π
return parseFloat(value,10)
}
var Matrix = $.factory({
init: function(rows,cols){
this.rows = rows || 3;
this.cols = cols || 3;
this.set.apply(this, [].slice.call(arguments,2))
},
set: function(){//用于设置元素
for(var i = 0, n = this.rows * this.cols; i < n; i++){
this[ Math.floor(i / this.rows) +","+(i % this.rows) ] = parseFloat(arguments[i]) || 0;
}
return this;
},
get: function(){//转变成数组
var array = [], ret = []
for(var key in this){
if(~key.indexOf(",")){
array.push( key )
}
}
array.sort() ;
for(var i = 0; i < array.length; i++){
ret[i] = this[array[i]]
}
return ret ;
},
set2D: function(a,b,c,d,tx,ty){
this.a = this["0,0"] = a * 1
this.b = this["1,0"] = b * 1
this.c = this["0,1"] = c * 1
this.d = this["1,1"] = d * 1
this.tx = this["2,0"] = tx * 1
this.ty = this["2,1"] = ty * 1
this["0,2"] = this["1,2"] = 0
this["2,2"] = 1;
return this;
},
get2D: function(){
return "matrix("+[ this["0,0"],this["1,0"],this["0,1"],this["1,1"],this["2,0"],this["2,1"] ]+")";
},
cross: function(matrix){
if(this.cols === matrix.rows){
var ret = new Matrix(this.rows, matrix.cols);
var n = Math.max(this.rows, matrix.cols)
for(var key in ret){
if(key.match(/(\d+),(\d+)/)){
var r = RegExp.$1, c = RegExp.$2
for(var i = 0; i < n; i++ ){
ret[key] += ( (this[r+","+i] || 0) * (matrix[i+","+c]||0 ));//X轴*Y轴
}
}
}
for(key in this){
if(typeof this[key] == "number"){
delete this[key]
}
}
for(key in ret){
if(typeof ret[key] == "number"){
this[key] = toFixed(ret[key])
}
}
return this
}else{
throw "cross error: this.cols !== matrix.rows"
}
},
//http://www.zweigmedia.com/RealWorld/tutorialsf1/frames3_2.html
//http://www.w3.org/TR/SVG/coords.html#RotationDefined
//http://www.mathamazement.com/Lessons/Pre-Calculus/08_Matrices-and-Determinants/coordinate-transformation-matrices.html
translate: function(tx, ty) {
tx = parseFloat(tx) || 0;//沿 x 轴平移每个点的距离。
ty = parseFloat(ty) || 0;//沿 y 轴平移每个点的距离。
var m = (new Matrix()).set2D(1 ,0, 0, 1, tx, ty);
this.cross(m)
},
translateX: function(tx) {
this.translate(tx, 0)
},
translateY: function(ty) {
this.translate(0, ty)
},
scale: function(sx, sy){
sx = isFinite(sx) ? parseFloat(sx) : 1 ;
sy = isFinite(sy) ? parseFloat(sy) : 1 ;
var m = (new Matrix()).set2D( sx, 0, 0, sy, 0, 0);
this.cross(m)
},
scaleX: function(sx) {
this.scale(sx, 1)
},
scaleY: function(sy) {
this.scale(1, sy)
},
rotate: function(angle, fix){//matrix.rotate(60)==>顺时针转60度
fix = fix === -1 ? fix : 1;
angle = rad(angle);
var cos = Math.cos(angle);
var sin = Math.sin(angle);// a, b, c, d
var m = (new Matrix()).set2D( cos,fix * sin , fix * -sin, cos, 0, 0);
return this.cross(m)
},
skew: function(ax, ay){
var xRad = rad(ax);
var yRad;
if (ay != null) {
yRad = rad(ay)
} else {
yRad = xRad
}
var m = (new Matrix()).set2D( 1, Math.tan( xRad ), Math.tan( yRad ), 1, 0, 0);
return this.cross(m)
},
skewX: function(ax){
return this.skew(ax, 0);
},
skewY: function(ay){
this.skew(0, ay);
},
// ┌ ┐┌ ┐
// │ a c tx││ M11 -M12 tx│
// │ b d ty││ -M21 M22 tx│
// └ ┘└ ┘
//http://help.adobe.com/zh_CN/FlashPlatform/reference/actionscript/3/flash/geom/Matrix.html
//分解原始数值,得到a,b,c,e,tx,ty属性,以及返回一个包含x,y,scaleX,scaleY,skewX,skewY,rotation的对象
decompose2D: function(){
var ret = {}
this.a = this["0,0"]
this.b = this["1,0"]
this.c = this["0,1"]
this.d = this["1,1"]
ret.x = this.tx = this["2,0"]
ret.y = this.ty = this["2,1"]
ret.scaleX = Math.sqrt(this.a * this.a + this.b * this.b);
ret.scaleY = Math.sqrt(this.c * this.c + this.d * this.d);
var skewX = Math.atan2(-this.c, this.d);
var skewY = Math.atan2(this.b, this.a);
if (skewX == skewY) {
ret.rotation = skewY/Matrix.DEG_TO_RAD;
if (this.a < 0 && this.d >= 0) {
ret.rotation += (ret.rotation <= 0) ? 180 : -180;
}
ret.skewX = ret.skewY = 0;
} else {
ret.skewX = skewX/Matrix.DEG_TO_RAD;
ret.skewY = skewY/Matrix.DEG_TO_RAD;
}
return ret;
}
});
"translateX,translateY,scaleX,scaleY,skewX,skewY".replace($.rword, function(n){
Matrix.prototype[n.toLowerCase()] = Matrix.prototype[n]
});
Matrix.DEG_TO_RAD = Math.PI/180;
机器瞎学/数据掩埋/模式混淆/人工智障/深度遗忘/神经掉线/计算机幻觉/专注单身二十五年
浙公网安备 33010602011771号