深度神经网络中的卷积层Convolutional Layer的推导
Assuming :8x8 matrix,conv kernel : 3x3, :Output。
,,
When padding = 1, stride=1
Y12 = X11W21 + X12W22+ X13W23+ X21W31+ X22W32+ X23W33
Y13 = X12W21 + X13W22+ X14W23+ X22W31+ X23W32+ X24W33
Y14 = X13W21 + X14W22+ X15W23+ X23W31+ X24W32+ X25W33
Y15 = X14W21 + X15W22+ X16W23+ X24W31+ X25W32+ X26W33
Y16 = X15W21 + X16W22+ X17W23+ X25W31+ X26W32+ X27W33
Y17 = X16W21 + X17W22+ X18W23+ X26W31+ X27W32+ X28W33
Y18 = X17W21 + X18W22+X27W31+ X28W32
Y21 = X11W12 + X12W13+ X21W22+ X22W23+ X31W32+ X32W33
Y22 = X11W11 + X12W12+ X13W13+ X21W21+ X22W22+ X23W23+ X31W31+ X32W32+ X33W33
…
Now we know ,and calculate ,
Calculate
So,
That is,
: 3x3, So
padding=0
…
Let's calculate
: 3x3, So
Inference:
When padding = p, stride=1
Turn out to be
- stride = 1, padding=p
Interesting.
浙公网安备 33010602011771号