# coding=utf-8
# kNN-约会网站约友分类
from numpy import *
import matplotlib.pyplot as plt
import matplotlib.font_manager as font
import operator
# 【1】获取数据
def init_data():
# 打开训练集文件
f = open(r"datingTestSet2.txt", "r")
rows = f.readlines()
lines_number = len(rows)
return_mat = zeros((lines_number, 3)) # lines_number行 3列
class_label_vec = []
index = 0
for row in [value.split("\t") for value in rows]:
return_mat[index, :] = row[0:3] # 取row前三列
class_label_vec.append(int(row[-1])) # row[-1]取列表最后一列数据
index += 1
# 关闭打开的文件
f.close()
return return_mat, class_label_vec
# 【2】特征缩放 X:=[X-mean(X)]/std(X) || X:=[X-min(X)]/max(X)-min(X) ;
def feature_scaling(data_set):
# 特征缩放参数
max_value = data_set.max(0)
min_value = data_set.min(0)
# avg_value = (min_value + max_value)/2
diff_value = max_value - min_value
norm_data_set = zeros(shape(data_set)) # 初始化与data_set结构一样的零array
# print(norm_data_set)
m = data_set.shape[0]
norm_data_set = data_set - tile(min_value, (m, 1)) # avg_value
norm_data_set = norm_data_set/tile(diff_value, (m, 1))
return norm_data_set, diff_value, min_value
# 【3】kNN实现 input_set:输入集 data_set:训练集
def classify0(input_set, data_set, labels, k):
data_set_size = data_set.shape[0]
# 计算距离tile 重复以input_set生成跟data_set一样行数的mat
diff_mat = tile(input_set, (data_set_size, 1)) - data_set
sq_diff_mat = diff_mat ** 2
sq_distances = sq_diff_mat.sum(axis=1)
distances = sq_distances ** 0.5
# 按照距离递增排序
sorted_dist_indicies = distances.argsort() # argsort返回从小到大排序的索引值
class_count = {} # 初始化一个空字典
# 选取距离最小的k个点
for i in range(k):
vote_ilabel = labels[sorted_dist_indicies[i]]
# 确认前k个点所在类别的出现概率,统计几个类别出现次数
class_count[vote_ilabel] = class_count.get(vote_ilabel, 0) + 1
# 返回前k个点出现频率最高的类别作为预测分类
sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)
return sorted_class_count[0][0]
# 【4】测试kNN
def dating_class_test():
# 测试样本比例
ho_ratio = 0.1
dating_data_mat, dating_labels = init_data()
norm_mat, diff_dt, min_value = feature_scaling(dating_data_mat)
m = norm_mat.shape[0]
num_test_vecs = int(m * ho_ratio) # 测试样本的数量
error_count = 0.0
for i in range(num_test_vecs):
# 测试样本和训练样本
classifier_result = classify0(norm_mat[i, :], norm_mat[num_test_vecs:m, :],
dating_labels[num_test_vecs:m], 4)
print("the classifier came back with:%d , the real answer is:%d" % (classifier_result, dating_labels[i]))
if classifier_result != dating_labels[i]:
error_count += 1.0
right_ratio = 1-error_count/float(num_test_vecs)
print("the total right rate is :%f %%" % (right_ratio*100))
# 【5】样本数据绘图
def make_plot():
# 获取数据
x, y = init_data()
# 特征缩放
norm_mat, diff_dt, min_value = feature_scaling(x)
fig = plt.figure()
ax = fig.add_subplot(111) # 画布分割一行一列数据在第一块
# 设置字体
simsun = font.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
# ax.scatter(x[:, 1], x[:, 2], 15.0*array(y), 15.0*array(y)) # 取2 3列绘图
# plt.xlabel("玩视频耗时百分比", fontproperties=simsun)
# plt.ylabel("周消耗冰激凌公升数", fontproperties=simsun)
ax.scatter(norm_mat[:, 0], norm_mat[:, 1], 15.0*array(y), 15.0*array(y)) # 取1 2列绘图
plt.xlabel("飞行常客里程数", fontproperties=simsun)
plt.ylabel("玩视频耗时百分比", fontproperties=simsun)
plt.show()
# 预测函数
def classify_main():
result_list = ['not at all', 'in small doses', 'in large doses']
# 输入
ff_miles = float(input("frequent flier miles earned per year?"))
percent_tats = float(input("percentage of time spent playing video games?"))
ice_cream = float(input("liters of ice cream consumed per year?"))
# 获取数据
dating_data_mat, dating_labels = init_data()
# 特征缩放
norm_mat, diff_dt, min_value = feature_scaling(dating_data_mat)
in_arr = array([ff_miles, percent_tats, ice_cream])
# 计算距离
classifier_result = classify0((in_arr-min_value)/diff_dt, norm_mat, dating_labels, 3)
print("You will probably like this person:", result_list[classifier_result-1])
# 主方法
if __name__ == "__main__":
# 绘图
make_plot()
# 测试kNN脚本
# dating_class_test()
# 预测函数
classify_main()