Gibbs Sampler (Python recipe)
http://code.activestate.com/recipes/413086-gibbs-sampler/
The gibbs sampler is an iterative conditional sampler from multidimensional probability density functions (PDFs). The resulting sample is plotted as a scatter plot with the Matplotlib module.
## {{{ http://code.activestate.com/recipes/413086/ (r2)
#Author: Flavio C. Coelho
from math import *
from RandomArray import *
from matplotlib.pylab import *
n=10000
rho=.99 #correlation
#Means
m1 = 10
m2 = 20
#Standard deviations
s1 = 1
s2 = 1
#Initialize vectors
x=zeros(n, Float)
y=zeros(n, Float)
sd=sqrt(1-rho**2)
# the core of the method: sample recursively from two normal distributions
# Tthe mean for the current sample, is updated at each step.
for i in range(1,n):
x[i] = normal(m1+rho*(y[i-1]-m2)/s2,s1*sd)
y[i] = normal(m2+rho*(x[i-1]-m1)/s1,s2*sd)
scatter(x,y,marker='d',c='r')
title('Amostrador de Gibbs')
xlabel('x')
ylabel('y')
grid()
show()
## end of http://code.activestate.com/recipes/413086/ }}}
浙公网安备 33010602011771号