#!/usr/bin/env python
import baostock as bs
import pandas as pd
import time
import os
import shutil
import multiprocessing
def download_factor(start_date, end_date, stock_df):
rs_list = []
result_factor = pd.DataFrame()
for code in stock_df["code"]:
# print("Downloading factor start:" + code,threading.current_thread().name)
rs_factor = bs.query_adjust_factor(code=code, start_date=start_date, end_date=end_date)
# print(rs_factor,"Downloading factor mid:" + code, threading.current_thread().name)
while (rs_factor.error_code == '0') & rs_factor.next():
rs_list.append(rs_factor.get_row_data())
result_factor = pd.DataFrame(rs_list, columns=rs_factor.fields)
# print("Downloading factor end:" + code, threading.current_thread().name)
# print(result_factor)
# print("Downloading factor end:" , threading.current_thread().name)
return result_factor
def download_data(start_date,end_date,code):
# 获取指定日期的指数、股票数据
data_df = pd.DataFrame()
#print("Downloading :" + code)
k_rs = bs.query_history_k_data_plus(code, "date,code,open,high,low,close,volume,amount,turn,pctChg,peTTM,pbMRQ,psTTM,pcfNcfTTM",
start_date=start_date, end_date=end_date,adjustflag= "2",frequency="d")
data_df = data_df.append(k_rs.get_data())
return data_df
def conpare_list():
stock_rs = bs.query_all_stock(end_date)
stock_df = stock_rs.get_data()
file_name = pathsave + "\\" + "all.csv"
print(file_name)
stock_read = pd.read_csv(file_name)
print(stock_read)
for code in stock_df["code"]:
#print(code)
flag_t = stock_read.loc[stock_read["code"] == code,"flag"]
flag_t = flag_t.reset_index(drop=True)
flag_t = pd.DataFrame(flag_t)
t = ''
if flag_t.empty:
t = "new"
else:
t = flag_t.loc[0,"flag"]
stock_df.loc[stock_df["code"] == code,"flag"] = t
return stock_df
def add_data(end_date,stock_df,pathsave):
stock_df = stock_df.drop_duplicates(subset=["code"], keep="last", inplace=False)
stock_df["code2"] = stock_df["code"].str.replace("sh.", "SH")
stock_df["code2"] = stock_df["code2"].str.replace("sz.", "SZ")
stock_df = stock_df.set_index("code")
#print(stock_df)
for code in stock_df.index:
file = pathsave + "\\" + stock_df.loc[code,"flag"] +"\\"+ stock_df.loc[code,"code2"]+".csv"
#print(file)
df_old = pd.DataFrame()
if os.path.isfile(file):
df_old = pd.read_csv(file)
df_all = download_data(stock_df.loc[code,"start_date"],end_date,code)
df_all["code"] = df_all["code"].str.replace("sh.", "SH")
df_all["code"] = df_all["code"].str.replace("sz.", "SZ")
df_all["date"] = df_all["date"].str.replace("-", "")
df_old = df_old.append(df_all)
#df_new = df_old.reset_index(drop=True)
df_old["date"] = df_old["date"].astype(str)
df_old = df_old.drop_duplicates(subset=["date"], keep="last", inplace=False)
df_old.to_csv(file,sep=",",encoding="gbk", index=False)
def rewrite_new_file(pathsave):#对新增加的股票进行移动,更新到all.csv文件
file_name_w = pathsave + "\\" + "all.csv"
file_name_r = pathsave + "\\" + "list.csv"
pathdir = pathsave + "\\" + "new"
stock_read = pd.read_csv(file_name_r)
pd_new = stock_read.loc[stock_read["flag"] == "new"]
#newfiles = os.listdir(pathdir)
#print(stock_read)
if len(pd_new)>0:
for file1 in pd_new["code"]:
file =file1
#print(file)
file = file.replace("sz.", "SZ")
file = file.replace("sh.", "SH")
file = file + ".csv"
file2 = file
file = pathdir + "\\" + file
if os.path.isfile(file):
df_new = pd.read_csv(file)
if pd.isna(df_new.loc[0,"peTTM"]):
print(file,"可能是指数文件")
else:
if file.find("SZ")>=0:
#print(file.find("SZ"))
stock_read.loc[stock_read["code"]==file1, "flag"] = "sz"
pathdir_sz = pathsave + "\\" + "sz"
dstfile = pathdir_sz +"\\"+file2
shutil.move(file, dstfile)
else:
stock_read.loc[stock_read["code"]==file1, "flag"] = "sh"
pathdir_sz = pathsave + "\\" + "sh"
dstfile = pathdir_sz + "\\" + file2
shutil.move(file, dstfile)
stock_read.to_csv(file_name_w,sep=",",encoding="utf-8", index=False)
def sub_process(start_date,end_date,df_only_name1,q):
lg = bs.login()
print('login respond error_code:' + lg.error_code)
print('login respond error_msg:' + lg.error_msg)
print('-----process begin-----')
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), multiprocessing.current_process().name)
df_factor1 = download_factor(start_date, end_date, df_only_name1)
q.put(df_factor1,block = False)
print('-----process done-----')
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),multiprocessing.current_process().name)
exit(0)
def sub_process2(end_date,df_only_name1,pathsave,q):
lg = bs.login()
print('login respond error_code:' + lg.error_code)
print('login respond error_msg:' + lg.error_msg)
print('-----process 下载数据 begin-----')
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), multiprocessing.current_process().name)
add_data(end_date, df_only_name1,pathsave)
q.put(multiprocessing.current_process().name,block = False)
print('-----process 数据下载写入结束 done-----')
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),multiprocessing.current_process().name)
exit(0)
if __name__ == '__main__':
# 获取指定日期全部股票的日K线数据
print("hello")
lg = bs.login()
print('login respond error_code:' + lg.error_code)
print('login respond error_msg:' + lg.error_msg)
pathsave = 'G:\\datas of status\\python codes\\baostock\\lx' # 设定临时文件存放位置
ori_date = "2018-01-01"#设定最初日期数据
start_date = "2020-08-18" #常设,设定这次要下载的数据开始日期
end_date = "2020-08-20" #常设,设定这次要下载的数据结束日期,结束日期必须是交易日,否则会出错
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
print("开始比较")
stock_df = conpare_list() #分清指数,上证,深证
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
print("开始下载factor")
file_w = pathsave + "\\" + "list.csv"
stock_df.to_csv(file_w, sep=",", index=False, header=True)
#=====================下载factor
all_nums = len(stock_df)
epochs = 5
step = int(all_nums / epochs)
process_list = []
q = multiprocessing.Queue(maxsize=epochs)
for i in range(epochs):
begin = i * step
end = begin + step
if i == epochs - 1:
end = all_nums
df_only_name1 = stock_df[begin:end]
print("no.",i,begin,end)
tmp_process = multiprocessing.Process(target=sub_process, args=(start_date,end_date,df_only_name1, q))
process_list.append(tmp_process)
for process in process_list:
process.start()
# print("start",process)
while (q.qsize() != epochs):
# print(q.qsize(),"begin")
if (q.qsize() >= 1):
print(q.qsize())
time.sleep(5)
else:
time.sleep(20)
time.sleep(1)
df_factor = pd.DataFrame()
while not q.empty():
list_g = q.get()
df_factor = df_factor.append(list_g)
#=========
#df_factor = download_factor(start_date,end_date,stock_df) #分清有无复权,若有则设定开初下载数据时间有最初日期,然后再重新下载数据
df_factor = df_factor.drop_duplicates(subset=["code"], keep="last", inplace=False)
print(df_factor)
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
#exit(0)
print("下载factor结束,开始下载数据")
stock_df["start_date"] = start_date
for code in df_factor["code"]:
stock_df.loc[stock_df["code"] == code,"start_date"] = ori_date
#print(stock_df[220:240])
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),"下边开始下载数据")
#==============================#下载数据
all_nums = len(stock_df)
epochs = 5
step = int(all_nums / epochs)
process_list = []
q = multiprocessing.Queue(maxsize=epochs)
for i in range(epochs):
begin = i * step
end = begin + step
if i == epochs - 1:
end = all_nums
df_only_name1 = stock_df[begin:end]
print("no.", i, begin, end)
tmp_process = multiprocessing.Process(target=sub_process2, args=(end_date, df_only_name1,pathsave, q))
process_list.append(tmp_process)
for process in process_list:
process.start()
# print("start",process)
while (q.qsize() != epochs):
# print(q.qsize(),"begin")
if (q.qsize() >= 1):
print(q.qsize())
time.sleep(5)
else:
time.sleep(20)
time.sleep(1)
#df_process = pd.DataFrame()
while not q.empty():
list_g = q.get()
print(list_g,"done")
#df_process = df_process.append(list_g)
#=============================
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
print("下载数据结束")
rewrite_new_file(pathsave)
#print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
bs.logout()