mcp playwright 简单试用
主要是一个演示集成,可以体验到mcp+ 大模型的方便之处
参考玩法
简单说明: 用户可以通过mcp client 或者集成的agent,然后client 配置playwright mcp 服务,对于 playwright mcp 服务可以使用remote cdp server 这样可以减少本地的资源占用(可以使用browserless后者资源占用比较少的lightpanda/browser)
参考示例
- app.py
我使用了deepseek模型
import asyncio
from dotenv import load_dotenv
from mcp_use import MCPAgent, MCPClient
from langchain_openai import ChatOpenAI
async def main():
load_dotenv(".env")
config = {
"mcpServers": {
"playwright": {
"command": "npx",
"args": ["@playwright/mcp@latest","--user-agent","Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3","--cdp-endpoint","ws://xxxxxxx:3000"],
"env": {
"DISPLAY": ":1"
}
}
}
client = MCPClient.from_dict(config)
llm = ChatOpenAI(model="deepseek-chat")
agent = MCPAgent(llm=llm, client=client, max_steps=30)
# Run the query
agent.memory_enabled =False
result = await agent.run(
"打开https://www.cnblogs.com/rongfengliang/p/18975058,对于博客内容进行总结",
external_history=None
)
print(f"\nResult: {result}")
if __name__ == "__main__":
asyncio.run(main())
- 效果
说明
以上是一个简单的集成玩法,通过playwright mcp 集成大模型进行爬虫还是挺不错的,至少少写一些代码,同时灵活性还很不错,当然也是有资源消耗的(token)
参考资料
https://code.visualstudio.com/mcp