POJ 3693 Maximum repetition substring 后缀数组
论文里面的神题,题意大概是找出当前字符串中的一个子串,使得这个子串由N个字符串循环构成,输出N最大的子串,如果有多输出字典序最小的一个。
解决方法感觉很犀利。。
首先,对于循环节长度为L的子串,必然有这个子串会经过str[0],str[L],str[2*L]...中的任意两个字符,也就是必然会经过str[n*L],str[n*L+L],n为某个值的情况,随便画两个就可以看出来。。(不过感觉很难想到啊。。)
知道了这个性质之后,就可以枚举L,然后找到最大的重复次数了。。
这里复杂度为N+N/2+N/3+....N/N ~ O(Nlog(N)), 顺便记录一下可能出现的长度。
然后根据可能长度,和sa的顺序来找出字典序最小解就好了。。
一开始无限RE,后来发现是DC3算法需要3倍空间忘记考虑了,真是逗比
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1e6 + 10;
//以下是DC3算法求后缀数组
#define F(x) ((x) / 3 + ((x) % 3 == 1 ? 0 : tb))
#define G(x) ((x) < tb ? (x) * 3 + 1 : ((x) - tb) * 3 + 2)
int wa[maxn], wb[maxn], wv[maxn], ws[maxn];
int c0(int *r, int a, int b) {
return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2];
}
int c12(int k, int *r, int a, int b) {
if (k == 2) return r[a] < r[b] || r[a] == r[b] && c12(1, r, a + 1, b + 1);
else return r[a] < r[b] || r[a] == r[b] && wv[a + 1] < wv[b + 1];
}
void sort(int *r, int *a, int *b, int n, int m) {
int i;
for (i = 0; i < n; i++) wv[i] = r[a[i]];
for (i = 0; i < m; i++) ws[i] = 0;
for (i = 0; i < n; i++) ws[wv[i]]++;
for (i = 1; i < m; i++) ws[i] += ws[i - 1];
for (i = n - 1; i >= 0; i--) b[--ws[wv[i]]] = a[i];
}
void dc3(int *r, int *sa, int n, int m) {
int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0, p;
r[n] = r[n + 1] = 0;
for (i = 0; i < n; i++) if (i % 3 != 0) wa[tbc++] = i;
sort(r + 2, wa, wb, tbc, m);
sort(r + 1, wb, wa, tbc, m);
sort(r, wa, wb, tbc, m);
for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
rn[F(wb[i])] = c0(r, wb[i - 1], wb[i]) ? p - 1 : p++;
if (p < tbc) dc3(rn, san, tbc, p);
else for (i = 0; i < tbc; i++) san[rn[i]] = i;
for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3;
if (n % 3 == 1) wb[ta++] = n - 1;
sort(r, wb, wa, ta, m);
for (i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i;
for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
for (; i < ta; p++) sa[p] = wa[i++];
for (; j < tbc; p++) sa[p] = wb[j++];
}
int Rank[maxn], height[maxn];
void calheight(int *r, int *sa, int n) {
int i, j, k = 0;
for (i = 1; i <= n; i++) Rank[sa[i]] = i;
for (i = 0; i < n; height[Rank[i++]] = k)
for (k ? k-- : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k++);
}
#undef F
#undef G
int sa[maxn], str[maxn], len, n, minv[maxn][30], val[maxn], vsz;
char buf[maxn];
void init_RMQ() {
for(int i = 0; i <= len; i++) {
minv[i][0] = height[i];
}
for(int j = 1; (1 << j) <= len + 1; j++) {
for(int i = 0; i + (1 << j) - 1 <= len; i++) {
minv[i][j] = min(minv[i][j - 1], minv[i + (1 << (j - 1))][j - 1]);
}
}
}
int query(int ql, int qr) {
if(ql > qr) swap(ql, qr);
ql++;
int kp = 0;
while((1 << (kp + 1)) <= qr - ql + 1) {
kp++;
}
return min(minv[ql][kp], minv[qr - (1 << kp) + 1][kp]);
}
int main() {
int kase = 1;
while(gets(buf), buf[0] != '#') {
len = strlen(buf);
vsz = 0;
for(int i = 0; i < len; i++) {
str[i] = buf[i];
}
str[len] = 0;
dc3(str, sa, len + 1, 200);
calheight(str, sa, len);
init_RMQ();
int maxstep = 0;
for(int L = 1; L <= len; L++) {
for(int i = 0; i < len && i + L < len; i += L) {
int s1 = query(Rank[i], Rank[i + L]);
int step = s1 / L + 1;
if(i - (L - s1 % L) >= 0) {
s1 = query(Rank[i - (L - s1 % L)], Rank[i - (L - s1 % L) + L]);
if(s1 / L + 1 > step) step++;
}
if(step > maxstep) {
maxstep = step; vsz = 0;
}
if(step == maxstep) val[vsz++] = L;
}
}
//printf("maxstep is %d\n", maxstep);
printf("Case %d: ", kase++);
if(maxstep <= 1) {
int minval = 500;
for(int i = 0; i < len; i++) minval = min(minval, (int)buf[i]);
putchar(minval); puts("");
continue;
}
bool found = false;
for(int i = 0; i <= len; i++) {
for(int j = 0; j < vsz; j++) {
if(sa[i] + val[j] <= len && query(i, Rank[sa[i] + val[j]]) / val[j] + 1 == maxstep) {
for(int k = 0; k < maxstep * val[j]; k++) {
putchar(buf[sa[i] + k]);
}
puts("");
found = true;
break;
}
}
if(found) break;
}
}
return 0;
}

浙公网安备 33010602011771号