FLink12--KeyByReduceApp
一、依赖
参考博文:https://www.cnblogs.com/robots2/p/16048648.html
二、代码
package net.xdclass.class9;
import java.util.Date;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import net.xdclass.model.VideoOrder;
/**
* @desc reduce算子,和sum类似,sum做简单聚合,reduce做复杂聚合
* aggregate支持更复杂聚合
* @menu
*/
public class FLink12KeyByReduceApp {
public static void main(String[] args) throws Exception{
//WebUi方式运行
// final StreamExecutionEnvironment env =
// StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置运行模式为流批一体
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//并行度
env.setParallelism(1);
//设置为自定义source
// DataStream<VideoOrder> ds = env.addSource(new VideoOrderSourceV2());
DataStream<VideoOrder> ds = env.fromElements(
new VideoOrder("20190242812", "springboot教程", 10,1001, new Date()),
new VideoOrder("20194350812", "微服务SpringCloud", 20,1001, new Date()),
new VideoOrder("20190814232", "Redis教程", 30,1001, new Date()),
new VideoOrder("20190523812", "⽹⻚开发教程", 40,1001, new Date()),
new VideoOrder("201932324", "百万并发实战Netty", 50,1001, new Date()),
new VideoOrder("20190242812", "springboot教程", 10,1001, new Date()),
new VideoOrder("20190814232", "Redis教程", 30,1001, new Date()));
KeyedStream<VideoOrder, Object> videoOrderObjectKeyedStream = ds.keyBy(new KeySelector<VideoOrder, Object>() {
@Override
public Object getKey(VideoOrder videoOrder) throws Exception {
return videoOrder.getTitle();
}
});
//reduce,做聚合。合并数据,返回新的聚合对象。大于两条才会触发
SingleOutputStreamOperator<VideoOrder> reduceResult = videoOrderObjectKeyedStream.reduce(
new ReduceFunction<VideoOrder>() {
@Override
public VideoOrder reduce(VideoOrder value1, VideoOrder value2) throws Exception {
VideoOrder reduceOrder = new VideoOrder();
reduceOrder.setTitle(value1.getTitle());
reduceOrder.setMoney(value1.getMoney() + value2.getMoney());
return reduceOrder;
}
});
reduceResult.print();
//DataStream需要调用execute,可以取个名称
env.execute("reduce map job");
}
}

浙公网安备 33010602011771号