面向对象的补充/进程/初识爬虫
一.面向对象的补充

class Foo(object): def __init__(self): self.info = {} def __setitem__(self, key, value): self.info[key] = value def __getitem__(self, item): return self.info.get(item) obj = Foo() obj['x'] = 123 print(obj['x']) 结果: 123

class Foo(object): def __init__(self): object.__setattr__(self, 'info', {}) # 在对象中设置值的本质 def __setattr__(self, key, value): self.info[key] = value def __getattr__(self, item): print(item) return self.info[item] obj = Foo() obj.name = 'alex' print(obj.name) 结果: name alex
二.进程
进程是计算中程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础,在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器,程序是指令,数据及组织形式的描述,进程是程序的实体
狭义定义:进程是正在运行的程序实例.
广义定义:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动.它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元.

第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。 第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时(操作系统执行之),它才能成为一个活动的实体,我们称其为进程。[3] 进程是操作系统中最基本、重要的概念。是多道程序系统出现后,为了刻画系统内部出现的动态情况,描述系统内部各道程序的活动规律引进的一个概念,所有多道程序设计操作系统都建立在进程的基础上。

从理论角度看,是对正在运行的程序过程的抽象;
从实现角度看,是一种数据结构,目的在于清晰地刻画动态系统的内在规律,有效管理和调度进入计算机系统主存储器运行的程序。

动态性:进程的实质是程序在多道程序系统中的一次执行过程,进程是动态产生,动态消亡的。
并发性:任何进程都可以同其他进程一起并发执行
独立性:进程是一个能独立运行的基本单位,同时也是系统分配资源和调度的独立单位;
异步性:由于进程间的相互制约,使进程具有执行的间断性,即进程按各自独立的、不可预知的速度向前推进
结构特征:进程由程序、数据和进程控制块三部分组成。
多个不同的进程可以包含相同的程序:一个程序在不同的数据集里就构成不同的进程,能得到不同的结果;但是执行过程中,程序不能发生改变。

程序是指令和数据的有序集合,其本身没有任何运行的含义,是一个静态的概念。
而进程是程序在处理机上的一次执行过程,它是一个动态的概念。
程序可以作为一种软件资料长期存在,而进程是有一定生命期的。
程序是永久的,进程是暂时的
1.进程的并行与并发
(1).并行:并行是指两者同时执行,比如赛跑,两个人都在不停的往前跑;(资源够用,比如三个线程,四核的CPU)
(2).并发:并发是指资源有限的情况下,两者交替轮流使用资源,比如一段路(单核CPU资源)同时只能过一个人,A走一段后,让给B,B用完继续给A,交替使用,目的是提高效率.
(3).区别:
并行是从微观上,也就是在一个精确的时间片刻,有不同的程序在执行,这就要求必须有多个处理器
并发是从宏观上,在一个时间段上可以看出是同时刻执行的,比如一个服务器同时处理多个session
2.进程的运行状态
在了解其他概念之前,我们首相要了解进程的几个状态,在程序运行的过程中,由于被操作系统的调度算法控制,程序会进入几个状态:就绪,运行和阻塞
(1).就绪(Ready)状态
当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态
(2).执行/运行(Running)状态
当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态
(3).阻塞(Blocked)状态
正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态.引起进程阻塞的事件可有很多种,例如:等待I/O完成,申请缓冲区不能满足,等待信件(信号)等.
三.Python程序中的进程操作
引入multiprocess模块
严格来说multiprocess不是一个模块而是python中一个操作,管理进程的包,之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块.由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大值分为四个部分:创建进程部分,进程同不部分,进程池部分,进程之间数据共享
1.process模块介绍:
process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)
强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号
参数介绍:
group参数未使用,值始终为None
target表示调用对象,即子进程要执行的任务
args表示调用对象的位置参数元组,args=(1,2,'egon',)
kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}
name为子进程的名称

p.start():启动进程,并调用该子进程中的p.run()
p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
p.is_alive():如果p仍然运行,返回True
p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程

p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
p.name:进程的名称
p.pid:进程的pid
p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候 ,就不会递归运行了
2.练习:

import multiprocessing data_list = [] def task(arg): data_list.append(arg) print(data_list) def run(): for i in range(10): p = multiprocessing.Process(target=task,args=(i,)) # p = threading.Thread(target=task,args=(i,)) p.start() if __name__ == '__main__': run() 结果: [1] [0] [2] [5] [4] [3] [6] [7] [8] [9]

import multiprocessing import time def task(arg): time.sleep(2) print(arg) def run(): print('111111111') p1 = multiprocessing.Process(target=task,args=(1,)) p1.name = 'pp1' p1.start() print('222222222') p2 = multiprocessing.Process(target=task, args=(2,)) p2.name = 'pp2' p2.start() print('333333333') if __name__ == '__main__': run() 结果: 111111111 222222222 333333333 1 2

import multiprocessing class MyProcess(multiprocessing.Process): def run(self): print('当前进程',multiprocessing.current_process()) def run(): p1 = MyProcess() p1.start() p2 = MyProcess() p2.start() if __name__ == '__main__': run() 结果: 当前进程 <MyProcess(MyProcess-1, started)> 当前进程 <MyProcess(MyProcess-2, started)>
3. 进程间的数据共享

Linux: import multiprocessing q = multiprocessing.Queue() def task(arg,q): q.put(arg) def run(): for i in range(10): p = multiprocessing.Process(target=task, args=(i, q,)) p.start() while True: v = q.get() print(v) run() ########################## Win: import multiprocessing def task(arg, q): q.put(arg) if __name__ == '__main__': q = multiprocessing.Queue() for i in range(10): p = multiprocessing.Process(target=task, args=(i, q,)) p.start() while True: v = q.get() print(v)

#Win: import multiprocessing def task(arg, dic): time.sleep(2) dic[arg] = 100 if __name__ == '__main__': m = multiprocessing.Manager() dic = m.dict() process_list = [] for i in range(10): p = multiprocessing.Process(target=task, args=(i, dic,)) p.start() process_list.append(p) while True: count = 0 for p in process_list: if not p.is_alive(): count += 1 if count == len(process_list): break print(dic) 结果: {0: 100, 1: 100, 2: 100, 3: 100, 4: 100, 5: 100, 6: 100, 7: 100, 8: 100, 9: 100} ############################# # Linux: import multiprocessing m = multiprocessing.Manager() dic = m.dict() def task(arg): dic[arg] = 100 def run(): for i in range(10): p = multiprocessing.Process(target=task, args=(i,)) p.start() input('>>>') print(dic.values()) if __name__ == '__main__': run()

import multiprocessing def task(arg,dic): pass if __name__ == '__main__': while True: # 连接上指定的服务器 # 去机器上获取url url = 'adfasdf' p = multiprocessing.Process(target=task, args=(url,)) p.start()
4.进程锁(和线程锁一样)

import time import multiprocessing lock = multiprocessing.RLock() def task(arg): print('鬼子来了') lock.acquire() time.sleep(2) print(arg) lock.release() if __name__ == '__main__': p1 = multiprocessing.Process(target=task,args=(1,)) p1.start() p2 = multiprocessing.Process(target=task, args=(2,)) p2.start() 结果: 鬼子来了 鬼子来了 1 2
5.进程池

为什么要有进程池?进程池的概念。
在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间。第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。那么我们要怎么做呢?
在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。
引入:from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

import time from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor def task(arg): time.sleep(2) print(arg) if __name__ == '__main__': pool = ProcessPoolExecutor(5) for i in range(10): pool.submit(task,i) 结果: 0 1 2 3 4 ...等2秒 5 6 8 7 9
四.初识爬虫:

import requests from bs4 import BeautifulSoup from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor # 模拟浏览器发送请求 # 内部创建 sk = socket.socket() # 和抽屉进行socket连接 sk.connect(...) # sk.sendall('...') # sk.recv(...) def task(url): print(url) r1 = requests.get( url=url, headers={ 'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.92 Safari/537.36' } ) # 查看下载下来的文本信息 soup = BeautifulSoup(r1.text,'html.parser') # print(soup.text) content_list = soup.find('div',attrs={'id':'content-list'}) for item in content_list.find_all('div',attrs={'class':'item'}): title = item.find('a').text.strip() target_url = item.find('a').get('href') print(title,target_url) def run(): pool = ThreadPoolExecutor(5) for i in range(1,50): pool.submit(task,'https://dig.chouti.com/all/hot/recent/%s' %i) if __name__ == '__main__': run()