HDU 4691(多校第九场1006) 后缀数组
。。。还能多说什么。
眼角一滴翔滑过。
一直以为题意是当前串与所有之前输入的串的LCP。。。然后就T了一整场。
扫了一眼标程突然发现他只比较输入的串和上一个串?
我心中突然有千万匹草泥马踏过。
然后随手就A了。。。
先RMQ预处理一下,复杂度为nlogn ,然后每次LCP询问只需O(1)的复杂度。
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Max 2505
#define FI first
#define SE second
#define ll __int64
#define PI acos(-1.0)
#define inf 0x3fffffff
#define LL(x) ( x << 1 )
#define bug puts("here")
#define PII pair<int,int>
#define RR(x) ( x << 1 | 1 )
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
using namespace std;
inline void RD(int &ret) {
char c;
int flag = 1 ;
do {
c = getchar();
if(c == '-')flag = -1 ;
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
ret *= flag ;
}
inline void OT(int a) {
if(a >= 10)OT(a / 10) ;
putchar(a % 10 + '0') ;
}
#define N 1000005
/****后缀数组模版****/
#define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置
#define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算
int wa[N],wb[N],wv[N],WS[N];
int sa[N*3] ;
int rank1[N],height[N];
int r[N*3];
int c0(int *r,int a,int b) {
return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2];
}
int c12(int k,int *r,int a,int b) {
if(k == 2)
return r[a] < r[b] || ( r[a] == r[b] && c12(1 , r , a + 1 , b + 1) );
else
return r[a] < r[b] || ( r[a] == r[b] && wv[a + 1] < wv[b + 1] );
}
void sort(int *r,int *a,int *b,int n,int m) {
int i;
for(i = 0; i < n; i ++)
wv[i] = r[a[i]];
for(i = 0; i < m; i++)
WS[i] = 0;
for(i = 0; i < n; i++)
WS[wv[i]] ++;
for(i = 1; i < m; i++)
WS[i] += WS[i-1];
for(i=n-1; i>=0; i--)
b[-- WS[wv[i]]] = a[i];
return;
}
//注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n
void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa
int i , j , *rn = r + n , *san = sa + n , ta = 0 ,tb = (n + 1) / 3 , tbc = 0 , p;
r[n] = r[n+1] = 0;
for(i = 0; i < n; i++) {
if(i % 3 != 0)
wa[tbc ++]=i; //tbc表示起始位置模3为1或2的后缀个数
}
sort(r + 2,wa,wb,tbc,m);
sort(r + 1,wb,wa,tbc,m);
sort(r,wa,wb,tbc,m);
for(p = 1,rn[F(wb[0])] = 0,i = 1; i < tbc; i++)
rn[F(wb[i])]=c0(r,wb[i - 1],wb[i])?p - 1 : p ++;
if(p < tbc)
dc3(rn,san,tbc,p);
else {
for(i = 0; i < tbc; i++)
san[rn[i]]=i;
}
//对所有起始位置模3等于0的后缀排序
for(i = 0; i < tbc; i++) {
if(san[i] < tb)
wb[ta ++] = san[i] * 3;
}
if(n % 3 == 1) //n%3==1,要特殊处理suffix(n-1)
wb[ta ++] = n - 1;
sort(r,wb,wa,ta,m);
for(i = 0; i < tbc; i++)
wv[wb[i] = G(san[i])] = i;
//合并所有后缀的排序结果,保存在sa数组中
for(i = 0,j = 0,p = 0; i < ta && j < tbc; p ++)
sa[p] = c12(wb[j] % 3,r,wa[i],wb[j]) ? wa[i ++] : wb[j ++];
for(; i < ta; p++)
sa[p] = wa[i++];
for(; j < tbc; p++)
sa[p] = wb[j++];
return;
}
//height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀
void calheight(int *r,int *sa,int n) {
int i , j , k = 0;
for(i = 1; i <= n; i++)
rank1[sa[i]] = i;
for(i = 0; i < n; height[rank1[i++]] = k)
for(k ? k -- : 0 , j = sa[rank1[i]-1]; r[i + k] == r[j + k]; k++);
}
int RMQ[N];
int mm[N];
int best[20][N];
void initRMQ(int n) {
int i,j,a,b;
for(mm[0] = -1,i = 1; i <= n; i++)
mm[i] = ((i & (i - 1)) == 0)?mm[i - 1] + 1 : mm[i - 1];
for(i = 1; i <= n; i++) best[0][i] = i;
for(i = 1; i <= mm[n]; i++)
for(j = 1; j <= n + 1 - (1 << i); j++) {
a = best[i - 1][j];
b = best[i - 1][j + (1 << (i - 1))];
if(RMQ[a] < RMQ[b]) best[i][j] = a;
else best[i][j] = b;
}
return;
}
int askRMQ(int a,int b) {
int t;
t = mm[b - a + 1];
b -= (1 << t ) - 1;
a = best[t][a];
b = best[t][b];
return RMQ[a] < RMQ[b] ? a : b;
}
int lcp(int a,int b) {
int t;
a = rank1[a];
b = rank1[b];
if(a > b) {
t = a;
a = b;
b = t;
}
return(height[askRMQ(a + 1,b)]);
}
/*********************************************/
#define N 1000005
char a[N] ;
int n ;
int cal(int now){
if(now == 0)return 1 ;
int nn = 0 ;
while(now){
nn ++ ;
now /= 10 ;
}
return nn ;
}
int main() {
int ttt = 0 ;
while(scanf("%s",a) != EOF ) {
int l = strlen(a) ;
for (int i = 0 ; i < l ; i ++ )r[i] = a[i] ;
r[l] = 0 ;
dc3(r , sa ,l + 1 , 200) ;
calheight(r , sa , l) ;
for (int i = 1 ; i <= l ; i ++ )RMQ[i] = height[i] ;
initRMQ(l) ;
RD(n) ;
ll num1 = 0 ,num2 = 0 ;
int x , y ;
int prex = -1 , prey = -1 ;
while(n -- ) {
RD(x) ;
RD(y) ;
num1 += (y - x) + 1 ;
if(prex == -1){
num2 += (y - x) + 3 ;
prex = x ;
prey = y ;
continue ;
}
int now = 0 ;
if(x == prex){
now = min(prey - prex , y - x) ;
}
else{
now = lcp(prex , x) ;
now = min(prey - prex , min(y - x , now) ) ;
}
prex = x ;
prey = y ;
int fk = now ;
now = y - x - now ;
if(now == 0){
num2 += 2 + cal(fk) ;
}else
num2 += cal(fk) + now + 2 ;
}
printf("%I64d %I64d\n",num1 ,num2) ;
ttt ++ ;
}
return 0 ;
}
浙公网安备 33010602011771号