Kafka源码分析
本文主要针对于Kafka的源码进行分析,版本为kafka-0.8.2.1。 由于时间有限,可能更新比较慢...
Kafka.scala
// 读取配置文件
val props = Utils.loadProps(args(0))
val serverConfig = new KafkaConfig(props)
KafkaMetricsReporter.startReporters(serverConfig.props)
val kafkaServerStartable = new KafkaServerStartable(serverConfig)
// 注册一个关闭钩子,当JVM关闭时调用KafkaServerStartable.shutdown
Runtime.getRuntime().addShutdownHook(new Thread() {
override def run() = kafkaServerStartable.shutdown
})
// 运行并等待结束
kafkaServerStartable.startup
kafkaServerStartable.awaitShutdown
Server
实际调用类为KafkaServer
def startup() {
kafkaScheduler.startup()
// 初始化Zookeeper内相关路径
zkClient = initZk()
// 日志管理器
logManager = createLogManager(zkClient, brokerState)
logManager.startup()
socketServer = new SocketServer(...)
socketServer.startup()
// 启动副本管理器
replicaManager = new ReplicaManager(config, time, zkClient, kafkaScheduler, logManager, isShuttingDown)
// 创建偏移量管理器
offsetManager = createOffsetManager()
// 实例化调度器
kafkaController = new KafkaController(config, zkClient, brokerState)
// 请求处理器
apis = new KafkaApis(...)
// 网络请求处理
requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId, socketServer.requestChannel, apis, config.numIoThreads)
brokerState.newState(RunningAsBroker)
Mx4jLoader.maybeLoad()
replicaManager.startup()
kafkaController.startup()
// Topic配置管理器
topicConfigManager = new TopicConfigManager(zkClient, logManager)
topicConfigManager.startup()
// Broker的心跳检查
kafkaHealthcheck = new KafkaHealthcheck(...)
kafkaHealthcheck.startup()
registerStats()
startupComplete.set(true)
info("started")
}
在KafkaServer的startup中看到主要进行几个主要服务的初始化和启动。
private def initZk(): ZkClient =
{
info("Connecting to zookeeper on " + config.zkConnect)
// Kafka在Zookeeper中的工作根目录
val chroot = {
if (config.zkConnect.indexOf("/") > 0)
config.zkConnect.substring(config.zkConnect.indexOf("/"))
else
""
}
// 创建工作根目录
if (chroot.length > 1) {
val zkConnForChrootCreation = config.zkConnect.substring(0, config.zkConnect.indexOf("/"))
val zkClientForChrootCreation = new ZkClient(...)
ZkUtils.makeSurePersistentPathExists(zkClientForChrootCreation, chroot)
info("Created zookeeper path " + chroot)
zkClientForChrootCreation.close()
}
// 实例化ZkClient
val zkClient = new ZkClient(config.zkConnect, config.zkSessionTimeoutMs, config.zkConnectionTimeoutMs, ZKStringSerializer)
// 在Zookeeper中创建必要持久路径
ZkUtils.setupCommonPaths(zkClient)
zkClient
}
KafkaScheduler实际为对线程池ScheduledThreadPoolExecutor的封装,这里不做过多的分析。
KafkaHealthcheck(...)
{
val brokerIdPath = ZkUtils.BrokerIdsPath + "/" + brokerId
val sessionExpireListener = new SessionExpireListener
def startup()
{
// 注册一个Zookeeper事件(状态)监听器
zkClient.subscribeStateChanges(sessionExpireListener)
// 在Zookeeper的/brokers/ids/id目录创建临时节点并写入节点信息
register()
}
}
IZkStateListener 定义了两种事件:一种是连接状态的改变,例如由未连接改变成连接上,连接上改为过期等;
另一种创建一个新的session(连接), 通常是由于session失效然后新的session被建立时触发。
class SessionExpireListener() extends IZkStateListener
{
@throws(classOf[Exception])
def handleStateChanged(state: KeeperState) {}
@throws(classOf[Exception])
def handleNewSession() = register()
}
ReplicaManager
def startup()
{
scheduler.schedule("isr-expiration", maybeShrinkIsr, period = config.replicaLagTimeMaxMs, unit = TimeUnit.MILLISECONDS)
}
// 定时调用maybeShrinkIsr
private def maybeShrinkIsr(): Unit =
{
trace("Evaluating ISR list of partitions to see which replicas can be removed from the ISR")
allPartitions.values.foreach(partition => partition.maybeShrinkIsr(config.replicaLagTimeMaxMs, config.replicaLagMaxMessages))
}
这里调用了cluster.Partition中的maybeShrinkIsr来将卡住的或者低效的副本从ISR中去除并更新HighWatermark。
def maybeShrinkIsr(replicaMaxLagTimeMs: Long, replicaMaxLagMessages: Long)
{
inWriteLock(leaderIsrUpdateLock) {
leaderReplicaIfLocal() match {
case Some(leaderReplica) =>
// 找出卡住和低效的Replica并从ISR中去除
val outOfSyncReplicas = getOutOfSyncReplicas(leaderReplica, replicaMaxLagTimeMs, replicaMaxLagMessages)
if(outOfSyncReplicas.size > 0) {
val newInSyncReplicas = inSyncReplicas -- outOfSyncReplicas
assert(newInSyncReplicas.size > 0)
// 更新ZK中的ISR
updateIsr(newInSyncReplicas)
// 计算HW并更新
maybeIncrementLeaderHW(leaderReplica)
replicaManager.isrShrinkRate.mark()
}
...
}
def getOutOfSyncReplicas(leaderReplica: Replica, keepInSyncTimeMs: Long, keepInSyncMessages: Long): Set[Replica] =
{
// Leader的最后写入偏移量
val leaderLogEndOffset = leaderReplica.logEndOffset
// ISR中排除LeaderReplica的其他集合
val candidateReplicas = inSyncReplicas - leaderReplica
// 卡住的Replica集合
val stuckReplicas = candidateReplicas.filter(r => (time.milliseconds - r.logEndOffsetUpdateTimeMs) > keepInSyncTimeMs)
// 低效的Replica
// 条件1 Replicas的offset > 0
// 条件2 Leader的offset - Replicas的offset > 阀值
val slowReplicas = candidateReplicas.filter(r =>
r.logEndOffset.messageOffset >= 0 &&
leaderLogEndOffset.messageOffset - r.logEndOffset.messageOffset > keepInSyncMessages)
// 返回卡住的和低效的Replicas
stuckReplicas ++ slowReplicas
}
Cluster
Controller

浙公网安备 33010602011771号