三角形中最小路径和(leetcode120)
一:解题思路
方法一:动态规划的方法。定义d(i,j)为坐标(i,j)的最小路径和。状态转移方程为:d(i,j)=min(d(i-1,j-1),d(i-1,j))+a(i,j)
d(0,0)=a(0,0),d(i,0)=d(i-1,0)+a(i,0),d(i,i)=d(i-1,i-1)+a(i,i)
二:完整代码示例 (C、C++、Java、Python)
方法一C++:
class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { int n = triangle.size(); vector<vector<int>> d(n,vector<int>(n,0)); d[0][0] = triangle[0][0]; for (int i = 1; i < n; i++) { d[i][0] = d[i - 1][0] + triangle[i][0]; d[i][i] = d[i - 1][i - 1] + triangle[i][i]; for (int j = 1; j < i; j++) { d[i][j] = min(d[i - 1][j - 1], d[i - 1][j]) + triangle[i][j]; } } int minValue = d[n-1][0]; for (int j = 1; j < n; j++) { minValue = min(minValue, d[n-1][j]); } return minValue; } };
方法一Java:
class Solution { public int minimumTotal(List<List<Integer>> triangle) { int n=triangle.size(); int[][] d=new int[n][n]; d[0][0]=triangle.get(0).get(0); for (int i=1;i<n;i++){ d[i][0]=d[i-1][0]+triangle.get(i).get(0); d[i][i]=d[i-1][i-1]+triangle.get(i).get(i); for (int j=1;j<i;j++){ d[i][j]=Math.min(d[i-1][j-1],d[i-1][j])+triangle.get(i).get(j); } } int min=d[n-1][0]; for (int j=1;j<n;j++){ min=Math.min(min,d[n-1][j]); } return min; } }
方法一Python:
class Solution: def minimumTotal(self, triangle: List[List[int]]) -> int: n=len(triangle) d=[[0]*n for i in range(n)] d[0][0]=triangle[0][0] for i in range(1,n): d[i][0]=d[i-1][0]+triangle[i][0] d[i][i]=d[i-1][i-1]+triangle[i][i] for j in range(1,i): d[i][j]=min(d[i-1][j-1],d[i-1][j])+triangle[i][j] minValue=d[n-1][0] for j in range(1,n): minValue=min(minValue,d[n-1][j]) return minValue

浙公网安备 33010602011771号