静力学FEM 12.30

1.静力学方程

2.加权余量法

考虑图所示变截面弹性杆的静态响应。这是线性应力分析或线弹性问题的一个例子,我们需要求杆内的应力分布σ(x)。

应力由物体的变形产生,而变形由物体内各点的位移u(x)表征。位移导致用ε(x)表示的应变;应变是一个无量纲变量。杆受到分布力b(x)或集中力作用。这个力可能由重力(如果杆垂直放置而非水平放置)、磁力或热应力引起;在一维情况下,我们将考虑单位长度上的体力,所以b(x)的单位是力/长度。此外,载荷可以规定在杆端,在这些位置位移未被规定;这些载荷被称为牵引力,用t表示。这些载荷的单位是力/面积,当乘以面积时,就得到所施加的力。

image-20241227005427708

静力学方程

\[\frac{\mathrm{d}}{\mathrm{d}x}\left(AE\frac{\mathrm{d}u}{\mathrm{d}x}\right)+b(x)=0,\quad0<x<l \]

\[\sigma\left(0\right)=\left(E\frac{\mathrm{d}u}{\mathrm{d}x}\right)=-\bar{t}\\ \]

\[u\left(l\right)=\bar{u} \]

积分弱形式

\[\int_0^lw\left[\frac{\mathrm{d}}{\mathrm{d}x}\left(AE\frac{\mathrm{d}u}{\mathrm{d}x}\right)+b\right]\mathrm{d}x=0, \quad\forall w\quad \mathrm{(a)} \]

\[\left[wA\left(E\frac{\mathrm{d}u}{\mathrm{d}x}+\bar{t}\right)\right]_{x=0}=0,\quad\forall w\mathrm{(b)} \]

(4)整理成

\[\int_0^lw\frac{\mathrm{d}}{\mathrm{d}x}\left(AE\frac{\mathrm{d}u}{\mathrm{d}x}\right)\mathrm{d}x+\int_0^lwb\mathrm{d}x=0,\quad\forall w \]

分布积分

\[\int_{0}^{l} w \frac{d}{dx} \left( AE \frac{du}{dx} \right) dx = \left[ w \left( AE \frac{du}{dx} \right) \right]_{0}^{l} - \int_{0}^{l} \left( AE \frac{du}{dx} \right) \frac{dw}{dx} dx \]

(7 )代入(6)

\[\left.\left(wAE\frac{\mathrm{d}u}{\mathrm{d}x}\right)\right|_0^l-\int_0^l\frac{\mathrm{d}w}{\mathrm{d}x}AE\frac{\mathrm{d}u}{\mathrm{d}x}\mathrm{d}x+\int_0^lwb\mathrm{d}x=0,\quad\forall w\text{且}w(l)=0 \]

\(\sigma=E\frac{\mathrm{d}u}{\mathrm{d}x}\)代入(8)

\[(wA\sigma)_{x=l}-(wA\sigma)_{x=0}-\int_0^l\frac{\mathrm{d}w}{\mathrm{d}x}AE\frac{\mathrm{d}u}{\mathrm{d}x}\mathrm{d}x+\int_0^lwb\mathrm{d}x=0,\quad\forall w\text{且}w(l)=0 \]

因为 $ w(l) = 0 $,且由 (2)式得到 $ (wA\sigma){x=0} = -(wAt) $(应力边界条件),将这些条件代入 (8) 式,得

\[\int_0^l\frac{\mathrm{d}w}{\mathrm{d}x}AE\frac{\mathrm{d}u}{\mathrm{d}x}\mathrm{d}x=\int_0^lwb\mathrm{d}x+\left(wA\bar{t}\right)_{x=0},\quad\forall w\text{且}w(l)=0 \]

应力边界条件自然满足, 自然边界条件。

3.伽辽金法

4.形函数构造

5.等参变换

6.高斯积分

7.方程求解

posted @ 2024-12-30 15:44  redufa  阅读(20)  评论(0)    收藏  举报