单元型函数
节点线性单元
对于杆单元,为了满足完备性要求,至少要选取一次线性多项式,即
\[\phi^e(x)=\alpha_0+\alpha_1 x
\]
在1和2节点分别满足
\[\phi^e(x_1^e)=\phi_1^e x \quad \text{与} \quad \phi^e(x_2^e)=\phi_2^e x
\]
此时得到两个线性方程,恰好对应(4.2)式中同样数量的待定系数\(\alpha_0\)与\(\alpha_1\),因此这些待定系数可由(4.3)式解得。
写成矩阵形式
\[\phi^e(x)=\left[1 \quad x\right]\left[\begin{array}{l}\alpha_0 \\ \alpha_1\end{array}\right]=p(x) \alpha^e
\]
采用节点值表示待定系数
\[\begin{array}{l}
\phi^e(x_1^e)=\phi_1^e x=\alpha_0+\alpha_1 x_1^e \rightarrow\left[\begin{array}{l}
1 \\
x_1^e
\end{array}\right]\left[\begin{array}{l}
\alpha_0 \\
\alpha_1
\end{array}\right] \\
\phi^e(x_2^e)=\phi_2^e x=\alpha_0+\alpha_1 x_2^e \rightarrow\left[\begin{array}{l}
1 \\
x_2^e
\end{array}\right]\left[\begin{array}{l}
\alpha_0 \\
\alpha_1
\end{array}\right]
\end{array}
\]
由(4.5)式解出
\[\alpha^e=(A^e)^{-1} \phi^e
\]
其中,\((A^e)^{-1}\)是\(A^e\)的逆矩阵,它可按下式计算得到
\[(A^e)^{-1}=\frac{1}{\left|A^e\right|}\left(A^e\right)^*
\]
\(\left|A^e\right|\)是\(A^e\)的行列式。
\((A^e)^*\)是\(A^e\)的伴随矩阵,它的元素\((A_{ij}^e)^*\)是\(A^e\)的元素\(A_{ij}^e\)的代数余子式。那么,对于(4.5)式中的\(A^e\),其逆矩阵为
\[(A^e)^{-1}=\frac{1}{l^e}\left[\begin{array}{cc}
x_2^e & -x_1^e \\
-1 & 1
\end{array}\right]=\frac{1}{l^e}\left[\begin{array}{cc}
l^e & -x_1^e \\
-1 & 1
\end{array}\right]
\]
其中,\(l^e\)为杆单元长度。
将(4.6)式代入(4.4)式,得
\[\phi^e(x)=N^e(x) \phi^e
\]
文中首先定义了单元形函数矩阵\(N^e(x)=[N_1^e(x) \quad N_2^e(x)] = p(x)(A^e)^{-1}\),并通过将\((4.8)\)式代入\((4.9)\)式,得到:
\[N^e = [N_1^e(x) \quad N_2^e(x)] = p(x)(A^e)^{-1} = \left[1 \quad x\right]\left[\begin{array}{cc}
\frac{x_2^e}{l^e} & -\frac{x_1^e}{l^e} \\
-\frac{1}{l^e} & \frac{1}{l^e}
\end{array}\right] = \left[\frac{l^e - x}{l^e} \quad \frac{x}{l^e}\right]
\]
在\((4.10)\)式中,\(N_1^e(x)\)与\(N_2^e(x)\)分别为单元在1节点与2节点的形函数,且这些形函数是线性函数,具有以下属性:
\[N_1^e(x_1^e) = 1, \quad N_1^e(x_2^e) = 0
\]
\[N_2^e(x_1^e) = 0, \quad N_2^e(x_2^e) = 1
\]
简记为:
\[N_i^e(x_j^e) = \delta_{ij}
\]
其中,\(\delta_{ij}\)为Kronecker符号,即:
\[\delta_{ij} = \begin{cases}
1, & i = j \\
0, & i \neq j
\end{cases}
\]
在第3章中的“弱”形式中,需要求导函数与场函数的导数,如下:
\[\frac{d\phi^e}{dx} = \frac{d(N^e \phi^e)}{dx} = \frac{dN^e}{dx} \phi^e = \frac{dN_1^e}{dx} \phi_1^e + \frac{dN_2^e}{dx} \phi_2^e
\]
写成矩阵形式:
\[\frac{d\phi^e}{dx} = \left[\begin{array}{ll}
\frac{dN_1^e}{dx} & \frac{dN_2^e}{dx}
\end{array}\right]\left[\begin{array}{l}
\phi_1^e \\
\phi_2^e
\end{array}\right] = B^e \phi^e
\]
其中,\(B^e\)称为单元应变矩阵,即:
\[B^e = \left[\begin{array}{ll}
\frac{dN_1^e}{dx} & \frac{dN_2^e}{dx}
\end{array}\right] = \left[\begin{array}{ll}
-\frac{1}{l^e} & \frac{1}{l^e}
\end{array}\right]
\]
浙公网安备 33010602011771号