伽辽金
![image]()
将图 中的杆件划分为 \(n_e\) 个杆单元。那么,在整个域内权函数插值为
\[w(x) = N(x)w
\]
其中
\[N(x) = [N_1(x) \quad N_2(x) \quad \cdots \quad N_{n_e}(x)]
\]
\[w = [w_1 \quad w_2 \quad \cdots \quad w_{n_e}]^T
\]
场函数的域内插值为
\[u(x) = N(x)u
\]
其中
\[(u = [u_1 \quad u_2 \quad \cdots \quad u_n]^T
\]
场函数必须满足强制边界条件,即令\(x = l\)的节点位移
\[u_1=\bar{u}_1
\]
其余节点的位移是未知的,将由接下来的伽辽金弱形式求解。
在强制边界条件上,要求\(w(l)=0\),所以须令
\[w_1 = 0
\]
其余节点的权函数是任意的。
单元和总体的矩阵是由集成矩阵关联的,如(2.18)式所示,可得到单元的节点信息,即
\[w^e = L^e w, \quad u^e = L^e u
\]
所以,单元的权函数与场函数插值表达式为
\[w^e(x) = N^e(x) w^e
\]
\[u^e(x) = N^e(x) u^e
\]
那么,在整个杆件域\([0, l]\)上的积分,转换为在每个单元域积分的叠加。进而,将(5.9)式代入(3.20)式,得
\[\sum_{e = 1}^{n_e} \int_0^l \left( \frac{d w^e}{d x} \right)^T A E \left( \frac{d u^e}{d x} \right) d x - \int_0^l \left( w^e \right)^T b d x - \left( w^e \right)^T A F \left. \frac{d u^e}{d x} \right|_{x = 0} ^{x = l} = 0
\]
其中
\[\frac{d w^e}{d x} = B^e w^e
\]
\[\frac{d u^e}{d x} = B^e u^e
\]
将(5.11)式代入(5.10)式,得到
\[\sum_{e = 1}^{n_e} \left( w^e \right)^T \left( \int_0^l \left( B^e \right)^T A E B^e u^e d x - \int_0^l \left( N^e \right)^T b d x - \left( \left( N^e \right)^T A F \left. \frac{d u^e}{d x} \right|_{x = 0} ^{x = l} \right) \right) = 0
\]
其中,第一项\(u^e\)不含积分变量,可移到积分符号外,即
\[\int_0^l \left( B^e \right)^T A E B^e u^e d x = \int_0^l \left( B^e \right)^T A E B^e d x u^e
\]
那么(5.12)式可写为
\[\left( w^e \right)^T \left( \int_0^l \left( B^e \right)^T A E B^e d x u^e - \int_0^l \left( N^e \right)^T b d x - \left( \left( N^e \right)^T A F \left. \frac{d u^e}{d x} \right|_{x = 0} ^{x = l} \right) \right) = 0
\]
对(5.14)式,定义两个非常重要的矩阵:
(1) 单元刚度矩阵
\[K^e = \int_0^{l^e} (B^e)^T A E B^e dx = \int_0^{l^e} (B^e)^T A E B^e dx
\]
(2) 单元等效节点力列阵
\[f^e = \int_0^{l^e} (N^e)^T b dx + \left. [(N^e)^T A F] \right|_{x = 0} ^{x = l^e} = \int_0^{l^e} (N^e)^T b dx + \left. [(N^e)^T A F] \right|_{x = 0} ^{x = l^e}
\]
将(5.15)式与(5.16)式代入(5.14)式,并使用(5.8)式,得
\[w^T \left( \sum_{e = 1}^{n_e} (L^e)^T K^e L^e u - \sum_{e = 1}^{n_e} (L^e)^T f^e \right) = 0
\]
在(5.17)式的推导中,\(w\)与\(x\)无关,所以可将其提到求和符号的外边。于是,得到了杆件的总体刚度矩阵与载荷列阵
\[K = \sum_{e = 1}^{n_e} (L^e)^T K^e L^e
\]
\[f = \sum_{e = 1}^{n_e} (L^e)^T f^e
\]
将(5.18)式代入(5.17)式,得到
\[w^T (K u - f) = 0, \quad \forall w \text{除了} w_1 = 0
\]
为了求解(5.19)式,令
\[r = K u - f
\]
其中,\(r\)称为不平衡力列阵。(5.19)式可写为
\[w^T r = 0, \quad \forall w \text{除了} w_1 = 0
\]
针对图5 - 1所示的结构,(5.21)式可以展开为
\[w_{2} r_{2} + w_{3} r_{3} + \cdots + w_{n} r_{n} = 0
\]
由于\(w\)的任意性,可知\(r_{2} = r_{3} = \cdots = r_{n} = 0\)。此时\(r_1\)未知,事实上,\(r_1\)是1节点处的不平衡力,也就是所谓的约束反力。于是,(5.20)式可写为
\[r = \begin{bmatrix}
r_1 \\
0 \\
\vdots \\
0
\end{bmatrix}
=
\begin{bmatrix}
k_{11} & k_{12} & \cdots & k_{1n} \\
k_{21} & k_{22} & \cdots & k_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
k_{n1} & k_{n2} & \cdots & k_{nn}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{bmatrix}
-
\begin{bmatrix}
f_1 \\
f_2 \\
\vdots \\
f_n
\end{bmatrix}
\]
重新整理,得
\[\begin{bmatrix}
k_{11} & k_{12} & \cdots & k_{1n} \\
k_{21} & k_{22} & \cdots & k_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
k_{n1} & k_{n2} & \cdots & k_{nn}
\end{bmatrix}
\begin{bmatrix}
\bar{u}_1 \\
u_2 \\
\vdots \\
u_n
\end{bmatrix}
=
\begin{bmatrix}
f_1 + r_1 \\
f_2 \\
\vdots \\
f_n
\end{bmatrix}
\]
(5.24)式未知数为\(\bar{u}_1, u_2, \cdots, u_n\)与\(r_1\),共\(n\)个,因此(5.24)式可解。至此,强制边界条件对场函数和权函数的附加要求即(5.6)式与(5.7)式,同时在(5.24)式中得到满足。