【链表】复习/刷题 记录

leetcode 203. Remove Linked List Elements

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* removeElements(ListNode *head, int val) {
        // ListNode *tem = (ListNode*)malloc(sizeof(ListNode));
        // tem->next = head;
        
        // ListNode *p = tem;
        
        // while(p->next != NULL) {
        //     if(p->next->val == val) {
        //         p->next = p->next->next;
        //     }
        //     if(p->next && p->next->val != val) p = p->next;
        //     if(p == NULL) break;
        // }
        // return tem->next;

        if(head == NULL) return head;
        head->next = removeElements(head->next, val);
        return head->val == val ? head->next : head;
    }
};

法1 循环

法2 递归

这个写法很短,看题解所得

好久没看过链表了,写题一脸懵逼(

21. Merge Two Sorted Lists

自己写的腌臜玩意
class Solution {
public:
    ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
        ListNode *ans = (ListNode*)malloc(sizeof(ListNode)); ans->next = NULL;
        ListNode *ANS = ans;
        ListNode *p1 = list1, *p2 = list2;
        while(p1 && p2) {
            ListNode *tem = (ListNode*)malloc(sizeof(ListNode));    // try 定义到外面 公用?
            if(p1->val <= p2->val) {
                tem->val = p1->val;
                tem->next = NULL;
                ans->next = tem;
                p1 = p1->next;  ans = ans->next;
            }
            else {
                tem->val = p2->val;
                tem->next = NULL;
                ans->next = tem;
                p2 = p2->next;  ans = ans->next;
            }
        }
        while(p1) {
            ListNode *tem = (ListNode*)malloc(sizeof(ListNode));
            tem->val = p1->val;
                tem->next = NULL;
                ans->next = tem;
                p1 = p1->next;  ans = ans->next;
        }
        while(p2) {
            ListNode *tem = (ListNode*)malloc(sizeof(ListNode));
            tem->val = p2->val;
                tem->next = NULL;
                ans->next = tem;
                p2 = p2->next;  ans = ans->next;
        }
        return ANS->next;
    }
};

简洁的代码:

class Solution {
public:
    ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
        ListNode *ans = (ListNode*)malloc(sizeof(ListNode));
        ans->next = NULL;
        ListNode *ANS = ans;
        while(list1 && list2) {
            if(list1->val <= list2->val) {
                ans->next = list1; 
                ans = ans->next;
                list1 = list1->next;
            }
            else {
                ans->next = list2; 
                ans = ans->next;
                list2 = list2->next;
            }
        }
        ans->next = (list1 ? list1 : list2);
        return ANS->next;
    }
};

改进的地方:

  1. 不需要保留list1,list2这两个链表的首元素地址了,也就不需要重新定义变量
  2. 当有一个链表已经空了的时候,这时候直接让ans的next指向另外一个链表,其实就是另一个链表剩下的部分,简化了代码量

141. Linked List Cycle

法1

因为最多有1e4个点,所以当遍历到第 1e4+1 个点时肯定是有环的

class Solution {
public:
    bool hasCycle(ListNode *head) {
        int cnt = 0;
        while(head) {
            cnt++;
            head = head->next;
            if(cnt >= 10001) break;
        }
        return (cnt >= 10001);
    }
};

法2

容易想到第一次访问过一个点就记录一下,注意vis数组里存的是链表元素的数据类型(ListNode)

class Solution {
public:
    bool hasCycle(ListNode *head) {
        map<ListNode*, int> mp;
        int cnt = 0;
        while(head)  {
            if(mp[head]) return 1;
            mp[head] = 1;
            head = head->next;
        }
        return 0;
    }
};

206. Reverse Linked List

反转链表

注意LeetCode用C++编译器但是写malloc不free会报错

class Solution {
public:
   ListNode* reverseList(ListNode* head) {
       if(head == NULL) return head;
       ListNode *tem = new ListNode;
       tem->val = head->val; tem->next = NULL;
       head = head->next;
       while(head) {
           ListNode *p = new ListNode;
           p->val = head->val; p->next = tem;
           tem = p;
           head = head->next;
       }
       return tem;
   }
};

20. Valid Parentheses

法1 因为一定有括号是连在一起的,思路是每次找 {} , () , [] 三者中的一个,去掉之后check剩余部分

写得很腌臢,明显可以用 s.replace("{}", "") 来简化

class Solution {
public:
    bool isValid(string s) {
        if(s.empty()) return 1;
        int n = s.size();
        if(n % 2 || s[0] == ']' || s[0] == ')' || s[0] == '}') return 0;
        int fl = -1;
        int i = s.find("()");
        if(i != -1) {
            fl = i;
        }
        else {
            i = s.find("[]");
            if(i != -1) {
                fl = i;
            }
            else {
                i = s.find("{}");
                if(i != -1) {
                    fl = i;
                }
            }
        }
        if(fl == -1) return 0;
        else {
            string tem = ""; 
            if(fl > 0) tem += s.substr(0, fl); 
            if(fl + 2 < n) tem += s.substr(fl + 2);
            return isValid(tem);
        }
    }
};

该好好复习STL了!!!

法2 利用stack,如果遇到左括号直接push,如果是右括号,它一定是跟栈顶的括号配对。如果不配直接return 0,能配对就弹出栈顶

class Solution {
public:
    bool isValid(string s) {
        // 正解应该是stack + 肯定可以直接配对
        stack<char> Sta;
        for(auto x : s) {
            // if(!Sta.empty()) cout << Sta.top() << endl;
            if(x == '(' || x == '[' || x == '{') Sta.push(x);
            else {
                if(Sta.empty()) return 0;
                char tem = Sta.top();
                if(x == '}') {
                    if(tem == '{') Sta.pop();
                    else return 0;
                }
                else if(x == ']') {
                    if(tem == '[') Sta.pop();
                    else return 0;
                }
                else if(x == ')') {
                    if(tem == '(') Sta.pop();
                    else return 0;
                }
            }
        }
        return Sta.empty();  
    }
};

232. Implement Queue using Stacks

做法就是纯模拟啦,记得栈和队列不要看错了。

原来通过做这道题我才知道,我根本不会cpp......只是会C with STL的菜鸡罢了(呜呜呜

this和构造函数什么的,完全都忘记了啊

typedef struct {
    int val;
    struct MyQueue *next;
} MyQueue;


MyQueue* myQueueCreate() { /// 头指针
    MyQueue *head = (MyQueue*)malloc(sizeof(MyQueue));
    head->next = NULL; head->val = 0;
    return head;
}

void myQueuePush(MyQueue* obj, int x) {
    MyQueue *tem = obj;
    MyQueue *p = myQueueCreate();
    p->val = x;
    while(tem->next) tem = tem->next;
    tem->next = p;
}

int myQueuePop(MyQueue* obj) {
    if(obj->next == NULL) return NULL;
    MyQueue *tem = obj->next;
    int x = tem->val;
    obj->next = tem->next;
    return x;
}

int myQueuePeek(MyQueue* obj) {
    if(obj->next == NULL) return NULL;
    MyQueue *tem = obj->next;
    int x = tem->val;
    return x;
}

bool myQueueEmpty(MyQueue* obj) {
    return (obj->next == NULL);
}

void myQueueFree(MyQueue* obj) {

}

/**
 * Your MyQueue struct will be instantiated and called as such:
 * MyQueue* obj = myQueueCreate();
 * myQueuePush(obj, x);
 
 * int param_2 = myQueuePop(obj);
 
 * int param_3 = myQueuePeek(obj);
 
 * bool param_4 = myQueueEmpty(obj);
 
 * myQueueFree(obj);
*/
posted @ 2023-03-18 11:18  starlightlmy  阅读(23)  评论(0)    收藏  举报