PRISMS Junior Varsity Training 20250919

Problem 1

Find all the roots of equation \(2x-2.8=\lfloor x\rfloor\).

Solution 1

\[\begin{align} 2x-2.8=\lfloor x\rfloor&\Longrightarrow x-1<2x-2.8\le x\\ &\Longleftrightarrow1.8<x\le2.8\\ &\Longrightarrow\lfloor x\rfloor=1\lor\lfloor x\rfloor=2 \end{align} \]

If \(\lfloor x\rfloor=1\),

\[\begin{align} 2x-2.8=\lfloor x\rfloor&\Longleftrightarrow2x-2.8=1\\ &\Longleftrightarrow x=1.9 \end{align} \]

If \(\lfloor x\rfloor=2\),

\[\begin{align} 2x-2.8=\lfloor x\rfloor&\Longleftrightarrow2x-2.8=2\\ &\Longleftrightarrow x=2.4 \end{align} \]

Therefore,

\[2x-2.8=\lfloor x\rfloor\Longleftrightarrow x=1.9\lor x=2.4 \]

The roots of equation \(2x-2.8=\lfloor x\rfloor\) are \(x=1.9\) and \(x=2.4\).

Problem 2

Solve equation \(x^2-\lfloor x\rfloor-2=0\).

Solution 2

\[\begin{align} x^2-\lfloor x\rfloor-2=0&\Longleftrightarrow x^2-2=\lfloor x\rfloor\\ &\Longrightarrow x-1<x^2-2\le x\\ &\Longleftrightarrow x-1<x^2-2\land x^2-2\le x\\ &\Longleftrightarrow(x<\frac{1-\sqrt5}{2}\lor x>\frac{1+\sqrt5}{2})\land(-1\le x\le2)\\ &\Longleftrightarrow-1\le x<\frac{1-\sqrt5}{2}\lor\frac{1+\sqrt5}{2}<x\le2\\ &\Longrightarrow\lfloor x\rfloor=-1\lor\lfloor x\rfloor=1\lor\lfloor x\rfloor=2 \end{align} \]

If \(\lfloor x\rfloor=-1\),

\[\begin{align} x^2-2=\lfloor x\rfloor&\Longleftrightarrow x^2-2=-1\\ &\Longleftrightarrow x=-1 \end{align} \]

If \(\lfloor x\rfloor=1\),

\[\begin{align} x^2-2=\lfloor x\rfloor&\Longleftrightarrow x^2-2=1\\ &\Longleftrightarrow x=\sqrt3 \end{align} \]

If \(\lfloor x\rfloor=2\),

\[\begin{align} x^2-2=\lfloor x\rfloor&\Longleftrightarrow x^2-2=2\\ &\Longleftrightarrow x=2 \end{align} \]

Therefore,

\[x^2-\lfloor x\rfloor-2=0\Longleftrightarrow x=-1\lor x=\sqrt3\lor x=2 \]

The roots of equation \(x^2-\lfloor x\rfloor-2=0\) are \(x=-1\), \(x=\sqrt3\) and \(x=2\).

Problem 3

Solve equation \(\lfloor\frac{5x-13}{3}\rfloor=\frac{3x+1}{5}\).

Solution 3

\[\begin{align} \left\lfloor\frac{5x-13}{3}\right\rfloor=\frac{3x+1}{5}&\Longleftrightarrow\exist k\in\Z,\left\lfloor\frac{5x-13}{3}\right\rfloor=k\land\frac{3x+1}{5}=k\\ &\Longleftrightarrow\exist k\in\Z,\left\lfloor\frac{5x-13}{3}\right\rfloor=k\land x=\frac{5k-1}{3}\\ &\Longleftrightarrow\exist k\in\Z,\left\lfloor\frac{25k-44}{9}\right\rfloor=k\land x=\frac{5k-1}{3}\\ \end{align} \]

\[\begin{align} \left\lfloor\frac{25k-44}{9}\right\rfloor=k&\Longleftrightarrow k\le\frac{25k-44}{9}<k+1\\ &\Longleftrightarrow\frac{11}{4}\le k<\frac{53}{16}\\ &\Longleftrightarrow k=3 \end{align} \]

Therefore,

\[\begin{align} \left\lfloor\frac{5x-13}{3}\right\rfloor=\frac{3x+1}{5}&\Longleftrightarrow\exist k\in\Z,k=3\land x=\frac{5k-1}{3}\\ &\Longleftrightarrow x=\frac{14}{3} \end{align} \]

The root of equation \(\lfloor\frac{5x-13}{3}\rfloor=\frac{3x+1}{5}\) is \(x=\frac{14}{3}\).

Problem 4

\[3x-3=\lfloor x\rfloor \]

Solution 4

\[\begin{align} 3x-3=\lfloor x\rfloor&\Longrightarrow x-1<3x-3\le x\\ &\Longleftrightarrow1<x\le\frac{3}{2}\\ &\Longrightarrow\lfloor x\rfloor=1\\ \end{align} \]

If \(\lfloor x\rfloor=1\),

\[\begin{align} 3x-3=\lfloor x\rfloor&\Longleftrightarrow3x-3=1\\ &\Longleftrightarrow x=\frac{4}{3} \end{align} \]

Therefore,

\[3x-3=\lfloor x\rfloor\Longleftrightarrow x=\frac{4}{3} \]

Problem 5

\[5-x^2=\lfloor x\rfloor \]

Solution 5

\[\begin{align} 5-x^2=\lfloor x\rfloor&\Longrightarrow x-1<5-x^2\le x\\ &\Longleftrightarrow x-1<5-x^2\land5-x^2\le x\\ &\Longleftrightarrow-3<x<2\land(x\le\frac{-1-\sqrt{21}}{2}\lor x\ge\frac{-1+\sqrt{21}}{2})\\ &\Longleftrightarrow-3<x\le\frac{-1-\sqrt{21}}{2}\lor\frac{-1+\sqrt{21}}{2}\le x<2\\ &\Longrightarrow\lfloor x\rfloor=-3\lor\lfloor x\rfloor=1 \end{align} \]

If \(\lfloor x\rfloor=-3\),

\[5-x^2=-3\Longleftrightarrow x=-2\sqrt2 \]

If \(\lfloor x\rfloor=1\),

\[5-x^2=1 \]

Therefore,

\[5-x^2=\lfloor x\rfloor\Longleftrightarrow x=-2\sqrt2 \]

Problem 6

\[|x-2|=\lfloor x\rfloor \]

Solution 6

\[\begin{align} \lfloor x\rfloor\in\Z&\Longleftrightarrow|x-2|\in\Z\\ &\Longleftrightarrow x\in\Z\\ &\Longleftrightarrow\lfloor x\rfloor=x\\ \end{align} \]

Therefore,

\[\begin{align} |x-2|=\lfloor x\rfloor&\Longleftrightarrow|x-2|=x\\ &\Longleftrightarrow x=1 \end{align} \]

Problem 7

\[\frac{3x+2}{4}=\left\lfloor\frac{6x-1}{5}\right\rfloor \]

Solution 7

\[\begin{align} \frac{3x+2}{4}=\left\lfloor\frac{6x-1}{5}\right\rfloor&\Longleftrightarrow\exist k\in\Z,\frac{3x+2}{4}=k\land\left\lfloor\frac{6x-1}{5}\right\rfloor=k\\ &\Longleftrightarrow\exist k\in\Z,x=\frac{4k-2}{3}\land\left\lfloor\frac{6x-1}{5}\right\rfloor=k\\ &\Longleftrightarrow\exist k\in\Z,x=\frac{4k-2}{3}\land\left\lfloor\frac{8k}{5}\right\rfloor=k+1 \end{align} \]

\[\begin{align} \left\lfloor\frac{8k}{5}\right\rfloor=k+1&\Longleftrightarrow k+1\le\frac{8k}{5}<k+2\\ &\Longleftrightarrow k+1\le\frac{8k}{5}<k+2\\ &\Longleftrightarrow\frac{5}{3}\le k<\frac{10}{3}\\ &\Longleftrightarrow k=2\lor k=3 \end{align} \]

Therefore,

\[\begin{align} \frac{3x+2}{4}=\left\lfloor\frac{6x-1}{5}\right\rfloor&\Longleftrightarrow\exist k\in\Z,x=\frac{4k-2}{3}\land(k=2\lor k=3)\\ &\Longleftrightarrow x=2\lor x=\frac{10}{3} \end{align} \]

Problem 8

\[\begin{cases} y=2\lfloor x\rfloor+\sqrt2\\ x=3\lfloor y\rfloor-12.5 \end{cases} \]

Solution 8

\[\begin{align} y=2\lfloor x\rfloor+\sqrt2\land x=3\lfloor y\rfloor-12.5&\Longleftrightarrow\exist k\in\Z,\lfloor x\rfloor=k\land y=2k+\sqrt2\land x=3\lfloor y\rfloor-12.5\\ &\Longleftrightarrow\exist k\in\Z,\lfloor x\rfloor=k\land y=2k+\sqrt2\land x=3\lfloor2k+\sqrt2\rfloor-12.5\\ &\Longleftrightarrow\exist k\in\Z,\lfloor x\rfloor=k\land y=2k+\sqrt2\land x=6k-9.5\\ &\Longleftrightarrow\exist k\in\Z,\lfloor6k-9.5\rfloor=k\land y=2k+\sqrt2\land x=6k-9.5\\ \end{align} \]

\[\begin{align} \lfloor6k-9.5\rfloor=k&\Longleftrightarrow k\le6k-9.5<k+1\\ &\Longleftrightarrow1.9\le k<2.1\\ &\Longleftrightarrow k=2\\ \end{align} \]

Therefore,

\[\begin{align} y=2\lfloor x\rfloor+\sqrt2\land x=3\lfloor y\rfloor-12.5&\Longleftrightarrow\exist k\in\Z,k=2\land y=2k+\sqrt2\land x=6k-9.5\\ &\Longleftrightarrow x=2.5\land y=4+\sqrt2 \end{align} \]

posted @ 2025-09-24 07:43  Apteryxx  阅读(18)  评论(0)    收藏  举报