PRISMS Senior Varsity Training 20250915

Problem 1

(2013 PUMaC, Number Theory Problem 2) Find the smallest \(n\) such that \(2013^n\) ends in \(001\).

Solution 1

It is easy to prove that the problem is equivalent to finding the smallest \(n>0\) such that \(2013^n\equiv1\pmod{1000}\).

\[\begin{align} 2013^n\equiv1\pmod{1000}&\Longleftrightarrow2013^n\equiv1\pmod{2^3}\land2013^n\equiv1\pmod{5^3}\\ &\Longleftrightarrow5^n\equiv1\pmod{2^3}\land13^n\equiv1\pmod{5^3}\\ &\Longleftrightarrow2^3\mid5^n-1^n\land5^3\mid13^n-1^n\\ &\Longleftrightarrow\nu_2(5^n-1^n)\ge3\land\nu_5(13^n-1^n)\ge3\\ \end{align} \]

If \(n\equiv0\pmod2\), applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_2(5^n-1^n)&=\nu_2(4)+\nu_2(6)+\nu_2(n)-1\\ &=2+1+\nu_2(n)-1\\ &\ge3 \end{align} \]

If \(n\equiv1\pmod2\), applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_2(5^n-1^n)&=\nu_2(4)\\ &=2\\ &<3 \end{align} \]

Therefore,

\[\nu_2(5^n-1^n)\ge3\Longleftrightarrow2\mid n \]

\[\begin{align} \nu_5(13^n-1^n)\ge3&\Longrightarrow3^n\equiv1\pmod5\\ &\Longleftrightarrow\delta_5(3)\mid n\\ &\Longleftrightarrow4\mid n \end{align} \]

Therefore,

\[\begin{align} \nu_5(13^n-1^n)\ge3&\Longleftrightarrow4\mid n\land\nu_5(13^n-1^n)\ge3\\ &\Longleftrightarrow\exist k\in\Z,n=4k\land\nu_5(13^n-1^n)\ge3\\ &\Longleftrightarrow\exist k\in\Z,n=4k\land\nu_5((13^4)^k-(1^4)^k)\ge3\\ \end{align} \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_5((13^4)^k-(1^4)^k)&=\nu_5(13^4-1^4)+\nu_5(k)\\ &=\nu_5(13-1)+\nu_5(13+1)+\nu_5(13^2+1^2)+\nu_5(k)\\ &=1+\nu_5(k) \end{align} \]

Therefore,

\[\begin{align} \nu_5(13^n-1^n)\ge3&\Longleftrightarrow\exist k\in\Z,n=4k\land1+\nu_5(k)\ge3\\ &\Longleftrightarrow\exist k\in\Z,n=4k\land25\mid k\\ &\Longleftrightarrow100\mid n \end{align} \]

Therefore,

\[\begin{align} 2013^n\equiv1\pmod{1000}&\Longleftrightarrow2\mid n\land100\mid n\\ &\Longleftrightarrow100\mid n \end{align} \]

The smallest \(n>0\) such that \(100\mid n\) is \(100\).

Problem 2

(2020 AIME I, Problem 12) Let \(n\) be the least positive integer such that \(149^n-2^n\) is divisible by \(3^35^57^7\). Find the number of positive divisors of \(n\).

Solution 2

\[\begin{align} 3^35^57^7\mid(149^n-2^n)&\Longleftrightarrow3^3\mid149^n-2^n\land5^5\mid149^n-2^n\land7^7\mid149^n-2^n\\ &\Longleftrightarrow\nu_3(149^n-2^n)\ge3\land\nu_5(149^n-2^n)\ge5\land\nu_7(149^n-2^n)\ge7 \end{align} \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_3(149^n-2^n)&=\nu_3(147)+\nu_3(n)\\ &=1+\nu_3(n) \end{align} \]

Therefore,

\[\begin{align} \nu_3(149^n-2^n)\ge3&\Longleftrightarrow1+\nu_3(n)\ge3\\ &\Longleftrightarrow3^2\mid n \end{align} \]

\[\nu_5(149^n-2^n)\ge5\Longrightarrow149^n\equiv2^n\pmod5 \]

Since

\[149^n\equiv\begin{cases} 1\pmod5, &n\equiv0\pmod2\\ 4\pmod5, &n\equiv1\pmod2 \end{cases} \]

\[2^n\equiv\begin{cases} 1\pmod5, &n\equiv0\pmod4\\ 2\pmod5, &n\equiv1\pmod4\\ 4\pmod5, &n\equiv2\pmod4\\ 3\pmod5, &n\equiv3\pmod4 \end{cases} \]

it follows that

\[149^n\equiv2^n\pmod5\Longleftrightarrow4\mid n \]

Therefore,

\[\begin{align} \nu_5(149^n-2^n)\ge5&\Longleftrightarrow4\mid n\land\nu_5(149^n-2^n)\ge5\\ &\Longleftrightarrow\exist k\in\Z,n=4k\land\nu_5(149^n-2^n)\ge5\\ &\Longleftrightarrow\exist k\in\Z,n=4k\land\nu_5((149^4)^n-(2^4)^n)\ge5\\ \end{align} \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_5((149^4)^k-(2^4)^k)&=\nu_5(149^4-2^4)+\nu_5(k)\\ &=\nu_5(149-2)+\nu_5(149+2)+\nu_5(149^2+2^2)+\nu_5(k)\\ &=1+\nu_5(k) \end{align} \]

Therefore,

\[\begin{align} \nu_5(149^n-2^n)\ge5&\Longleftrightarrow\exist k\in\Z,n=4k\land1+\nu_5(k)\ge5\\ &\Longleftrightarrow\exist k\in\Z,n=4k\land5^4\mid k\\ &\Longleftrightarrow4\cdot5^4\mid n\\ \end{align} \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_7(149^n-2^n)&=\nu_7(147)+\nu_7(n)\\ &=2+\nu_7(n) \end{align} \]

Therefore,

\[\begin{align} \nu_7(149^n-2^n)\ge7&\Longleftrightarrow2+\nu_7(n)\ge7\\ &\Longleftrightarrow7^5\mid n \end{align} \]

Therefore,

\[\begin{align} 3^35^57^7\mid149^n-2^n&\Longleftrightarrow3^2\mid n\land4\cdot5^4\mid n\land 7^5\mid n\\ &\Longleftrightarrow2^23^25^47^5\mid n \end{align} \]

The smallest \(n>0\) such that \(2^23^25^47^5\mid n\) is \(2^23^25^47^5\), it has \((2+1)(2+1)(4+1)(5+1)=270\) divisors.

Problem 3

(1991 IMOSL) Find the largest \(k\) such that

\[1991^k\mid1990^{1991^{1992}}+1992^{1991^{1990}} \]

Solution 3

\[\begin{align} 1991^k\mid1990^{1991^{1992}}+1992^{1991^{1990}}&\Longleftrightarrow11^k\mid1990^{1991^{1992}}+1992^{1991^{1990}}\land181^k\mid1990^{1991^{1992}}+1992^{1991^{1990}}\\ &\Longleftrightarrow\nu_{11}(1990^{1991^{1992}}+1992^{1991^{1990}})\ge k\land\nu_{181}(1990^{1991^{1992}}+1992^{1991^{1990}})\ge k\\ \end{align} \]

\[\begin{align} 1990^{1991^{1992}}+1992^{1991^{1990}}&=1990^{1991^{1990}1991^2}+1992^{1991^{1990}}\\ &=(1990^{1991^2})^{1991^{1990}}+1992^{1991^{1990}} \end{align} \]

Therefore,

\[\nu_{11}(1990^{1991^{1992}}+1992^{1991^{1990}})=\nu_{11}((1990^{1991^2})^{1991^{1990}}+1992^{1991^{1990}}) \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_{11}((1990^{1991^2})^{1991^{1990}}+1992^{1991^{1990}})&=\nu_{11}(1990^{1991^2}+1992)+1990\nu_{11}(1991)\\ &=\nu_{11}(\sum_{n=0}^{1991^2}\binom{1991^2}{n}1991^n(-1)^{1991^2-n}+1992)+1990\\ &=\nu_{11}(\sum_{n=1}^{1991^2}\binom{1991^2}{n}1991^n(-1)^{1991^2-n}+1991)+1990\\ &=\nu_{11}(1991)+\nu_{11}(\sum_{n=1}^{1991^2}\binom{1991^2}{n}1991^{n-1}(-1)^{1991^2-n}+1)+1990\\ &=1+0+1990\\ &=1991\\ \end{align} \]

Similarly, it follows that

\[\nu_{181}(1990^{1991^{1992}}+1992^{1991^{1990}})=1991 \]

Therefore,

\[\begin{align} 1991^k\mid1990^{1991^{1992}}+1992^{1991^{1990}}&\Longleftrightarrow1991\ge k\land1991\ge k\\ &\Longleftrightarrow1991\ge k \end{align} \]

The largest \(k\) such that \(1991\ge k\) is \(1991\).

Problem 4

(2006 KMO first round, Problem 6) If \(m\) is an integer such that

\[3^m\mid7^{3^{527}}-1 \]

find the maximum possible value of \(m\).

Solution 4

\[3^m\mid7^{3^{527}}-1\Longleftrightarrow\nu_3(7^{3^{527}}-1^{3^{527}})\ge m \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_3(7^{3^{527}}-1^{3^{527}})&=\nu_3(6)+\nu_3(3^{527})\\ &=1+527\\ &=528\\ \end{align} \]

Therefore,

\[3^m\mid7^{3^{527}}-1\Longleftrightarrow528\ge m \]

The largest integer \(m\) such that \(528\ge m\) is \(528\).

Problem 5

Find the sum of all the divisors \(d\) of \(N=19^{88}-1\) which are of the form \(d=2^a3^b\) with \(a,b\in\N\).

Solution 5

\[\begin{align} 2^a3^b\mid19^{88}-1&\Longleftrightarrow2^a\mid19^{88}-1\land3^b\mid19^{88}-1\\ &\Longleftrightarrow\nu_2(19^{88}-1^{88})\ge a\land\nu_3(19^{88}-1^{88})\ge b \end{align} \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_2(19^{88}-1^{88})&=\nu_2(19-1)+\nu_2(19+1)+\nu_2(88)-1\\ &=1+2+3-1\\ &=5 \end{align} \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_3(19^{88}-1^{88})&=\nu_3(19-1)+\nu_3(88)\\ &=2\\ \end{align} \]

Therefore,

\[2^a3^b\mid19^{88}-1\Longleftrightarrow5\ge a\land2\ge b \]

The sum of all the divisors \(d\) of the form \(d=2^a3^b\) is

\[\begin{align} \sum_{a=0}^5\sum_{b=0}^22^a3^b&=(\sum_{a=0}^52^a)(\sum_{b=0}^23^b)\\ &=63\cdot13\\ &=819 \end{align} \]

Problem 6

Let \(k\) be a positive integer. Find all positive integers \(n\) such that \(3^k\mid2^n-1\).

Solution 6

\[\begin{align} 3^k\mid2^n-1&\Longrightarrow3\mid2^n-1\\ &\Longleftrightarrow2^n\equiv1\pmod3\\ &\Longleftrightarrow\delta_3(2)\mid n\\ &\Longleftrightarrow2\mid n\\ \end{align} \]

Therefore,

\[\begin{align} 3^k\mid2^n-1&\Longleftrightarrow2\mid n\land3^k\mid2^n-1\\ &\Longleftrightarrow\exist m\in\Z,n=2m\land3^k\mid2^n-1\\ &\Longleftrightarrow\exist m\in\Z,n=2m\land3^k\mid4^m-1\\ &\Longleftrightarrow\exist m\in\Z,n=2m\land\nu_3(4^m-1^m)\ge k\\ \end{align} \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_3(4^m-1^m)&=\nu_3(4-1)+\nu_3(m)\\ &=1+\nu_3(m)\\ \end{align} \]

Therefore,

\[\begin{align} 3^k\mid(2^n-1)&\Longleftrightarrow\exist m\in\Z,n=2m\land1+\nu_3(m)\ge k\\ &\Longleftrightarrow\exist m\in\Z,n=2m\land3^{k-1}\mid m\\ &\Longleftrightarrow2\cdot3^{k-1}\mid m \end{align} \]

Problem 7

Find all primes \(p,q\) such that

\[\frac{(5^p-2^p)(5^q-2^q)}{pq} \]

is an integer.

Solution 7

Without the loss of generality, let \(p\le q\).

\[\frac{(5^p-2^p)(5^q-2^q)}{pq}\in\Z\Longleftrightarrow pq\mid(5^p-2^p)(5^q-2^q) \]

Since

\[(5^p-2^p)(5^q-2^q)\equiv1\pmod2 \]

it follows that

\[pq\mid(5^p-2^p)(5^q-2^q)\Longrightarrow p\ne2\land q\ne2 \]

\[\begin{align} pq\mid(5^p-2^p)(5^q-2^q)&\Longrightarrow p\mid(5^p-2^p)(5^q-2^q)\\ &\Longleftrightarrow(5^p-2^p)(5^q-2^q)\equiv0\pmod p \end{align} \]

Applying Fermat's Little Theorem yields

\[5^p-2^p\equiv3\pmod p \]

Therefore, if \(p\ne 3\),

\[\begin{align} (5^p-2^p)(5^q-2^q)\equiv0\pmod p&\Longleftrightarrow5^q-2^q\equiv0\pmod p\\ &\Longleftrightarrow\left(\frac{5}{2}\right)^q\equiv1\pmod p\\ &\Longleftrightarrow\delta_p\left(\frac{5}{2}\right)\mid q\\ &\Longleftrightarrow\delta_p\left(\frac{5}{2}\right)=q\\ \end{align} \]

Applying Fermat's Little Theorem yields

\[\left(\frac{5}{2}\right)^{p-1}\equiv1\pmod p \]

\[\left(\frac{5}{2}\right)^{p-1}\equiv1\pmod p\Longleftrightarrow\delta_p\left(\frac{5}{2}\right)\mid p-1 \]

Therefore,

\[\begin{align} (5^p-2^p)(5^q-2^q)\equiv0\pmod p&\Longrightarrow q\mid p-1\\ &\Longrightarrow q<p \end{align} \]

By contradiction, \(p=3\).

Therefore,

\[\begin{align} pq\mid(5^p-2^p)(5^q-2^q)&\Longleftrightarrow39(5^q-2^q)\equiv0\pmod q\\ &\Longleftrightarrow q\mid117\\ &\Longleftrightarrow q=3\lor q=13\\ \end{align} \]

Therefore, all primes \(p,q\) such that

\[\frac{(5^p-2^p)(5^q-2^q)}{pq} \]

is an integer are \(\langle p,q\rangle=\langle3,3\rangle\), \(\langle p,q\rangle=\langle3,13\rangle\) and \(\langle p,q\rangle=\langle13,3\rangle\).

Problem 8

Find all positive integers \(n\) such that \(3^n-1\) is divisible by \(2^n\).

Solution 8

\[2^n\mid3^n-1\Longleftrightarrow\nu_2(3^n-1^n)\ge n \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_2(3^n-1^n)&=\begin{cases} \nu_2(3-1)+\nu_2(3+1)+\nu_2(n)-1,&n\equiv0\pmod2\\ \nu_2(3-1),&n\equiv1\pmod2\\ \end{cases}\\ &=\begin{cases} \nu_2(n)+2,&n\equiv0\pmod2\\ 1,&n\equiv1\pmod2\\ \end{cases} \end{align} \]

Therefore,

\[\begin{align} \nu_2(3^n-1^n)\ge n&\Longleftrightarrow(n\equiv0\pmod2\land\nu_2(n)+2\ge n)\lor(n\equiv1\pmod2\land1\ge n)\\ &\Longleftrightarrow(n\equiv0\pmod2\land 2^{n-2}\mid n)\lor n=1\\ &\Longleftrightarrow n=1\lor n=2\lor n=4 \end{align} \]

Therefore,

\[2^n\mid3^n-1\Longleftrightarrow n=1\lor n=2\lor n=4 \]

Problem 9

Find all positive integers \(a\) such that \(\frac{5^a+1}{3^a}\) is a positive integer.

Solution 9

\[\begin{align} \frac{5^a+1}{3^a}\in\Z_+&\Longleftrightarrow3^a\mid5^a+1\\ &\Longrightarrow5^a+1\equiv0\pmod3\\ &\Longleftrightarrow2^a\equiv2\pmod3\\ &\Longleftrightarrow a\equiv1\pmod2 \end{align} \]

Therefore,

\[\begin{align} 3^a\mid5^a+1&\Longleftrightarrow a\equiv1\pmod2\land 3^a\mid5^a+1\\ &\Longleftrightarrow a\equiv1\pmod2\land\nu_3(5^a+1^a)\ge a\\ \end{align} \]

Applying Lifting The Exponent Lemma yields that, if \(a\equiv1\pmod 2\),

\[\begin{align} \nu_3(5^a+1^a)&=\nu_3(6)+\nu_3(a)\\ &=1+\nu_3(a) \end{align} \]

Therefore,

\[\begin{align} 3^a\mid5^a+1&\Longleftrightarrow1+\nu_3(a)\ge a\\ &\Longleftrightarrow3^{a-1}\mid a\\ &\Longleftrightarrow a=1 \end{align} \]

Therefore, the only positive integer \(a\) such that \(\frac{5^a+1}{3^a}\) is a positive integer is \(a=1\).

Problem 10

(PUMaC 2023 Division A, Individual Finals Problem 1) Let \(p>3\) be a prime and \(k\ge0\) an integer. Find the multiplicity of \(X-1\) in the factorization of

\[f(X)=X^{3p^k-1}+X^{3p^k-2}+\dots+X+1 \]

modulo \(p\).

Solution 10

\[\begin{align} f(X)&\equiv X^{3p^k-1}+X^{3p^k-2}+\dots+X+1\pmod p\\ &\equiv\frac{X^{3p^k}-1}{X-1}\pmod p\\ &\equiv\frac{(X^3)^{p^k}-1^{p^k}}{X-1}\pmod p\\ &\equiv\frac{(X^3-1)^{p^k}}{X-1}\pmod p\\ &\equiv(X-1)^{p^k-1}(X^2+X+1)^{p^k}\pmod p\\ \end{align} \]

Since when \(X=1\), \(X-1\equiv0\pmod p\), \(X^2+X+1\not\equiv0\pmod p\), it follows that the multiplicity of \(X-1\) in the factorization of \(f(X)\) is \(p^k-1\), modulo \(p\).

Problem 11

(2017 CGMO, Problem 1) Find all positive integers \(n\) such that for every positive odd integer \(a\), we have

\[2^{2017}\mid a^n-1 \]

Solution 11

\[\forall a,2^{2017}\mid a^n-1\Longleftrightarrow\forall a,\nu_2(a^n-1^n)\ge2017 \]

Applying Lifting The Exponent Lemma yields

\[\nu_2(a^n-1^n)=\begin{cases} \nu_2(a-1)+\nu_2(a+1)+\nu_2(n)-1,&n\equiv0\pmod2\\ \nu_2(a-1),&n\equiv1\pmod2 \end{cases} \]

Therefore,

\[\begin{align} \forall a,2^{2017}\mid a^n-1&\Longleftrightarrow(n\equiv0\pmod2\land\forall a,\nu_2(a-1)+\nu_2(a+1)+\nu_2(n)-1\ge2017)\lor(n\equiv1\pmod2\land\forall a,\nu_2(a-1)\ge2017)\\ &\Longleftrightarrow n\equiv0\pmod2\land\forall a,\nu_2(n)\ge2018-\nu_2(a-1)-\nu_2(a+1)\\ &\Longleftrightarrow n\equiv0\pmod2\land\nu_2(n)\ge2018-\min_a\{\nu_2(a-1)+\nu_2(a+1)\}\\ &\Longleftrightarrow n\equiv0\pmod2\land\nu_2(n)\ge2015\\ &\Longleftrightarrow2^{2015}\mid n \end{align} \]

Problem 12

(2010 China Western Mathematical Olympiad, Problem 1) Let \(m,k\ge0,p=2^{2^m}+1\) a prime. Prove:

  1. \(2^{2^{m+1}p^k}\equiv1\pmod{p^{k+1}}\);
  2. The smallest \(n\) such that \(2^n\equiv1\pmod{p^{k+1}}\) is \(2^{m+1}p^k\).

Solution 12

\[\begin{align} 2^{2^{m+1}p^k}\equiv1\pmod{p^{k+1}}&\Longleftrightarrow p^{k+1}\mid2^{2^{m+1}p^k}-1\\ &\Longleftrightarrow\nu_p((2^{2^{m+1}})^{p^k}-1^{p^k})\ge k+1 \end{align} \]

Applying Lifting The Exponent Lemma yields

\[\begin{align} \nu_p((2^{2^{m+1}})^{p^k}-1^{p^k})&=\nu_p(2^{2^{m+1}}-1)+k\nu_p(p)\\ &=\nu_p(2^{2^m}-1)+\nu_p(2^{2^m}+1)+k\\ &=k+1\\ \end{align} \]

Therefore,

\[2^{2^{m+1}p^k}\equiv1\pmod{p^{k+1}} \]

If \(\delta_{p^{k+1}}(2)<2^{m+1}p^k\),

\[\begin{align} 2^{2^{m+1}p^k}\equiv1\pmod{p^{k+1}}&\Longleftrightarrow\delta_{p^{k+1}}(2)\mid2^{m+1}p^k\\ &\Longleftrightarrow\delta_{p^{k+1}}(2)\mid2^mp^k\lor(k>0\land\delta_{p^{k+1}}(2)\mid2^{m+1}p^{k-1})\\ &\Longleftrightarrow2^{2^mp^k}\equiv1\pmod{p^{k+1}}\lor(k>0\land2^{2^{m+1}p^{k-1}}\equiv1\pmod{p^{k+1}})\\ \end{align} \]

\[\begin{align} p=2^{2^m}+1&\Longleftrightarrow2^{2^m}\equiv-1\pmod p\\ &\Longrightarrow2^{2^mp^k}\equiv-1\pmod p\\ &\Longleftrightarrow p\mid2^{2^mp^k}+1\\ &\Longrightarrow p\nmid2^{2^mp^k}-1\\ &\Longrightarrow p^{k+1}\nmid2^{2^mp^k}-1\\ &\Longleftrightarrow2^{2^mp^k}\not\equiv1\pmod{p^{k+1}} \end{align} \]

For \(k>0\),

\[\begin{align} 2^{2^{m+1}p^{k-1}}\equiv1\pmod{p^{k+1}}&\Longleftrightarrow p^{k+1}\mid2^{2^{m+1}p^{k-1}}-1\\ &\Longleftrightarrow\nu_p((2^{2^{m+1}})^{p^{k-1}}-1^{p^{k-1}})\ge k+1\\ &\Longleftrightarrow k\ge k+1\\ \end{align} \]

Therefore,

\[2^{2^{m+1}p^{k-1}}\not\equiv1\pmod{p^{k+1}} \]

Therefore,

\[2^{2^{m+1}p^k}\not\equiv1\pmod{p^{k+1}} \]

By contradiction,

\[\delta_{p^{k+1}}(2)=2^{m+1}p^k \]

Therefore, the smallest \(n\) such that \(2^n\equiv1\pmod{p^{k+1}}\) is \(2^{m+1}p^k\).

posted @ 2025-09-23 20:33  Apteryxx  阅读(30)  评论(0)    收藏  举报