hdu 1005 快速幂
Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 93488 Accepted Submission(s): 22297
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The
input consists of multiple test cases. Each test case contains 3
integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n
<= 100,000,000). Three zeros signal the end of input and this test
case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
Author
CHEN, Shunbao
Source
Recommend
import java.util.Scanner;
public class Main {
static void print(int[][] m){
System.out.println();
for(int i=0; i<2; i++){
for(int j=0; j<2; j++)
System.out.print(m[i][j]+" ");
System.out.println();
}
}
static void mul(int[][] a, int[][] b){
int[][] c = new int[2][2];
for(int i=0; i<2; i++)
for(int j=0; j<2; j++){
c[i][j]=0;
for(int k=0; k<2; k++)
c[i][j] = (c[i][j] + a[i][k]*b[k][j])%7;
}
for(int i=0; i<2; i++)
for(int j=0; j<2; j++) b[i][j]=c[i][j];
}
public static int quickPower(int n, int a, int b){
int[][] m = {{1,0},{1,0}};
int[][] g = {{a,b},{1,0}};
while(n>0){
if((n & 1) == 1) mul(g,m);
mul(g,g);
n>>=1;
}
// print(m);
return m[0][0];
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s = new Scanner(System.in);
while(true){
int a = s.nextInt(), b=s.nextInt(),n=s.nextInt();
if(a==0 && b==0 && n==0) break;
int ans = n < 3 ? 1 : quickPower(n-2, a, b);
System.out.println(ans);
}
}
}

浙公网安备 33010602011771号