Spark和Java API(七)计算PageRank
本文介紹如何基于Spark和Java来计算PageRan。我们为以下图求解PageRank:

创建工程
创建一个Maven工程,pom.xml文件如下:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.github.ralgond</groupId>
<artifactId>spark-java-api</artifactId>
<version>0.0.1-SNAPSHOT</version>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.1.1</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>
</project>
编写java类PageRank
创建一个包com.github.ralgond.sparkjavaapi,在该包下创建一个名为PageRank的类,该类内容如下:
package com.github.ralgond.sparkjavaapi;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
public class PageRank {
public static void main(String args[]) {
SparkConf conf = new SparkConf().setAppName("PageRank Application");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> data1 = sc.parallelize(Arrays.asList("A B,C", "B A,C", "C A,B,D,E", "D C,E", "E C,D"));
JavaPairRDD<String, List<String>> links = data1.mapToPair(x -> {
String[] a = x.split("\\s+", 2);
String[] b = a[1].split(",");
return new Tuple2<String, List<String>>(a[0], Arrays.asList(b));
});
JavaPairRDD<String, Double> ranks = links.mapValues(x -> 1.0);
for (int i = 0; i < 10; i++) {
JavaPairRDD<String, Tuple2<List<String>, Double>> tmp = links.join(ranks);
JavaPairRDD<String, Double> contributions = tmp.flatMapToPair(x -> {
String pageId = x._1;
List<String> ls = x._2._1;
Double rank = x._2._2;
List<Tuple2<String, Double>> ret = new ArrayList<>();
for (String dest : ls) {
ret.add(new Tuple2<String, Double>(dest, rank/ls.size()));
}
return ret.iterator();
});
ranks = contributions.reduceByKey((x, y)-> x + y).mapValues(v -> 0.15 + 0.85 * v);
}
System.out.println(ranks.collect());
sc.close();
}
}
编译并运行
通过mvn clean package编译出jar包spark-java-api-0.0.1-SNAPSHOT.jar。
到spark安装目录里,执行如下命令:
bin\spark-submit --class com.github.ralgond.sparkjavaapi.PageRank {..}\spark-java-api-0.0.1-SNAPSHOT.jar
便可以看到结果:


浙公网安备 33010602011771号