多线程丶

多线程核心概念

  • 线程就是独立的执行路径
  • 在程序运行时,即使没有自己创建线程,后台也会有多个线程,如主线程(用户线程)、gc线程(守护线程)
  • main()称之为主线程,为系统的入口,用于执行整个程序
  • 在一个进程中,如果开辟了多个线程,线程的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为干预的
  • 对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制
  • 线程会带来额外的开销,如CPU调度时间、并发控制的开销
  • 每个线程在自己的工作内存交互,内存控制不当会造成数据不一致

三种方式创建线程

在线Jdk8文档搜Thread

继承Thread类(不建议使用,OOP单继承局限性)

官方文档案例

class PrimeThread extends Thread {
    long minPrime;
    PrimeThread(long minPrime) {
        this.minPrime = minPrime;
    }

    public void run() {
        // compute primes larger than minPrime
        . . .
    }
}
//然后,以下代码将创建一个线程并启动它运行:
PrimeThread p = new PrimeThread(143);
p.start();//Thread风格启动

练习案例一

public class TestThread1 extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            System.out.println("我在看代码~~~~~~~" + i);
        }
    }

    public static void main(String[] args) {
        //main线程,主线程
        //创建一个线程对象
        TestThread1 testThread1 = new TestThread1();
        testThread1.start();//线程开启不一定立即执行,由cpu调度

        for (int i = 0; i < 200; i++) {
            System.out.println("我在学习多线程~~~~" + i);
        }
        //执行效果:主线程和创建的线程穿插着执行
    }
}

练习案例二(Jar包

import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;

//练习Thread,实现多线程同步下载图片
public class TestThread2 extends Thread {
    private String url;//下载地址
    private String name;//文件名

    public TestThread2(String url,String name) {
        this.url = url;
        this.name = name;
    }

    //线程执行体
    @Override
    public void run() {
        WebDownloader webDownloader = new WebDownloader();
        webDownloader.downloader(url, name);
        System.out.println("下载了文件名为:"+name+"的文件");
    }

    public static void main(String[] args) {
        TestThread2 t1 = new TestThread2("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
        TestThread2 t2 = new TestThread2("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
        TestThread2 t3 = new TestThread2("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");
//同时下载图片 不一样的图片
        t1.start();
        t2.start();
        t3.start();
    }
}

class WebDownloader{
    public void downloader(String url,String name) {
        try {
            FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
        } catch (IOException e) {
            e.printStackTrace();
            System.out.println("IO异常,downloader方法出现问题");
        }
    }
}

实现Runnable接口(推荐)

官方文档案例

class PrimeRun implements Runnable {
    long minPrime;
    PrimeRun(long minPrime) {
        this.minPrime = minPrime;
    }

    public void run() {
        // compute primes larger than minPrime
        . . .
    }
}
// 然后,以下代码将创建一个线程并启动它运行:
PrimeRun p = new PrimeRun(143);
new Thread(p).start();//runnable风格启动

练习案例

public class TestThread3 implements Runnable {
    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            System.out.println("我在看代码~~~~~~~" + i);
        }
    }

    public static void main(String[] args) {
        TestThread3 testThread3 = new TestThread3();
        new Thread(testThread3).start();//代理

        for (int i = 0; i < 200; i++) {
            System.out.println("我在学习多线程~~~~" + i);
        }
    }
}

练习案例二

public class TestThread2 implements Runnable {
    private String url;//下载地址
    private String name;//文件名

    public TestThread2(String url,String name) {
        this.url = url;
        this.name = name;
    }

    //线程执行体
    @Override
    public void run() {
        WebDownloader webDownloader = new WebDownloader();
        webDownloader.downloader(url, name);
        System.out.println("下载了文件名为:"+name+"的文件");
    }

    public static void main(String[] args) {
        TestThread2 t1 = new TestThread2("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
        TestThread2 t2 = new TestThread2("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
        TestThread2 t3 = new TestThread2("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");

        new Thread(t1).start();
        new Thread(t2).start();
        new Thread(t3).start();
    }
}

class WebDownloader{
    public void downloader(String url,String name) {
        try {
            FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
        } catch (IOException e) {
            e.printStackTrace();
            System.out.println("IO异常,downloader方法出现问题");
        }
    }
}

练习案例三(多个线程操作同一个资源(线程不安全))

public class TestThread4 implements Runnable{
    private int ticket = 10;
    @Override
    public void run() {
        while (true) {
            if(ticket<=0){
                break;
            }
            //模拟延时
            try {
                Thread.sleep(200);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"-->拿到了第"+ticket--+"票");
        }
    }

    public static void main(String[] args) {
        TestThread4 testThread4 = new TestThread4();
        new Thread(testThread4,"小明").start();
        new Thread(testThread4,"老师").start();
        new Thread(testThread4,"黄牛党").start();
    }
}

案例练习四

public class TestThread5 implements Runnable{
    //胜利者
    public static String winner;
    @Override
    public void run() {
        for (int i = 0; i <= 100; i++) {
            //模拟兔子睡觉
            if (Thread.currentThread().getName().equals("兔子") && i % 10 == 0) {
                try {
                    Thread.sleep(2);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            //判断比赛是否结束
            if (gameover(i)) {
                break;
            }
            System.out.println(Thread.currentThread().getName()+"-->跑了"+i+"米");
        }
    }

    //比赛是否结束
    public boolean gameover(int steps){
        if (null != winner) {
            return true;
        }else{
            if (steps >= 100) {
                winner = Thread.currentThread().getName();
                System.out.println("winner is:" + winner);
                return true;
            }
        }
        return false;
    }

    public static void main(String[] args) {
        TestThread5 testThread5 = new TestThread5();
        new Thread(testThread5,"兔子").start();
        new Thread(testThread5,"乌龟").start();
    }
}

实现Callable接口

  • 实现Callable接口,需要返回值类型
  • 重写call方法,需要抛出异常
  • 创建目标对象
  • 创建执行服务:ExecutorService ser = Executors.newFixedThreadPool(3);
  • 提交执行:Future r1 = ser.submit(t1);
  • 获取结果:Boolean rs1 = r1.get();
  • 关闭服务:ser.shutdown();

案例

public class TestThread6 implements Callable<Boolean> {
    private String url;//下载地址
    private String name;//文件名

    public TestThread6(String url,String name) {
        this.url = url;
        this.name = name;
    }

    @Override
    public Boolean call() throws Exception {
        WebDownloader webDownloader = new WebDownloader();
        webDownloader.downloader(url, name);
        System.out.println("下载了文件名为:"+name+"的文件");
        return true;
    }

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        TestThread6 t1 = new TestThread6("https://img2020.cnblogs.com/blog/874710/202010/874710-20201027164829816-1026952085.png", "1026952085.png");
        TestThread6 t2 = new TestThread6("https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/732720a8702e414daa38542eddd44519~tplv-k3u1fbpfcp-zoom-1.image", "zoom-1.image");
        TestThread6 t3 = new TestThread6("https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/4c2617fe68944ac08a37f3b5b4c15b09~tplv-k3u1fbpfcp-zoom-1.image", "zoom-2.image");
        //创建执行服务
        ExecutorService ser = Executors.newFixedThreadPool(3);
        //提交执行
        Future<Boolean> r1 = ser.submit(t1);
        Future<Boolean> r2 = ser.submit(t2);
        Future<Boolean> r3 = ser.submit(t3);
        //获取结果
        Boolean rs1 = r1.get();
        Boolean rs2 = r2.get();
        Boolean rs3 = r3.get();
        //关闭服务
        ser.shutdown();
    }
}

class WebDownloader{
    public void downloader(String url,String name) {
        try {
            FileUtils.copyURLToFile(new URL(url),new File(name));//下载到项目根目录
        } catch (IOException e) {
            e.printStackTrace();
            System.out.println("IO异常,downloader方法出现问题");
        }
    }
}

静态代理模式

public class StaticProxy {
    public static void main(String[] args) {
        WeddingCompany weddingCompany = new WeddingCompany(new You());
        weddingCompany.happyMarry();
    }
}

interface Marry{//首先,接口定义规则是没有问题的
    void happyMarry();
}

class You implements Marry {//实现结婚的接口也是正常思维
    @Override
    public void happyMarry() {
        System.out.println("结婚超开心!");
    }
}

/**
 * 代理对象的套路是,它搞一个构造函数来接收真是结婚对象
 * 同时它又继承同样的结婚接口,而要做的是在实现结婚方法的过程中做文章
 */
class WeddingCompany implements Marry{
    private Marry target;
    public WeddingCompany(Marry target) {
        this.target = target;
    }

    @Override
    public void happyMarry() {
        before();
        this.target.happyMarry();
        after();
    }

    private void after() {
        System.out.println("开心回家");
    }

    private void before() {
        System.out.println("布置婚礼");
    }
}

类比

new Thread(() ->System.out.println("我爱你")).start();
//Thread实现了Runnable接口,而它构造函数接收的对象也实现了Runnable接口

Lamda表达式

  • 避免匿名内部类定义过多
  • 函数式编程

如果某个接口只包含了一个抽象方法,那么它就是一个函数式接口,我们可以通过Lamda表达式来创建该接口的对象。

进化(推导)过程

public class TestLamda {

    //2、静态内部类
    static class ILike2 implements ILike {
        @Override
        public void lamda(int x) {
            System.out.println("i like lamda " + x);
        }
    }

    public static void main(String[] args) {
        ILike like = new Like();
        like.lamda(1);

        like = new ILike2();
        like.lamda(2);

        //3、局部内部类
        class ILike3 implements ILike {
            @Override
            public void lamda(int x) {
                System.out.println("i like lamda " + x);
            }
        }
        like = new ILike3();
        like.lamda(3);

        //4、匿名内部类
        like = new ILike() {
            @Override
            public void lamda(int x) {
                System.out.println("i like lamda " + x);
            }
        };
        like.lamda(4);

        //5、Lamda表达式(基于这个接口是函数时接口,只有一个方法)
        like = (int x) -> {
            System.out.println("i like lamda " + x);
        };
        like.lamda(5);

        //6、继续简化:去掉参数类型
        like = (x) -> {
            System.out.println("i like lamda " + x);
        };
        like.lamda(6);

        //7、继续简化:去掉括号(前提是参数只有一个)
        like = x -> {
            System.out.println("i like lamda " + x);
        };
        like.lamda(7);

        //8、继续简化:去掉大括号(前提是大括号中只有一行)
        like = x -> System.out.println("i like lamda " + x);
        like.lamda(8);
    }
}

//定义一个函数式接口
interface ILike {
    void lamda(int x);
}

//1、实现类
class Like implements ILike {
    @Override
    public void lamda(int x) {
        System.out.println("i like lamda " + x);
    }
}

线程状态

Jdk中是6种:NEW、WAITING、TIMED_WAITING、RUNNABLE、BLOCKED、TERMINATED

(没有列到Jdk中的状态估计是底层C++的,不需要Java参与的吧?running、ready)

img

线程方法

  • setPriority(int newPrority)优先级
  • static void sleep(long millis)阻塞状态,抛出InterruptedException异常
  • void join()插队,InterruptedException异常
  • static void yield()暂停当前正在执行的线程对象,并执行其他线程
  • void interrupt()中断线程(别用这个)
  • boolean isAlive()知死活

停止线程

不要使用Jdk提供的stop()和destroy()方法,推荐线程自己停止下来:用标志位实现

public class TestStop implements Runnable{
    boolean flag = true;
    @Override
    public void run() {
        while (flag) {
            System.out.println("run …… Thread");
        }
    }

    public void stop() {
        this.flag = false;
    }

    public static void main(String[] args) {
        TestStop testStop = new TestStop();
        new Thread(testStop).start();
        //上面是用户线程就绪,交给cpu调度。下面是主线程要做的工作
        for (int i = 0; i <= 100; i++) {
            System.out.println("主线程--->"+i);
            if (100 == i) {
                System.out.println("主线程 即将把 用户线程 停止掉");
                testStop.stop();
            }
        }
    }
}

线程休眠

  • sleep(时间)指定当前线程阻塞的毫秒数
  • sleep存在异常InterruptedException
  • sleep时间达到后线程进入就绪状态
  • sleep可以模拟网络延时倒计时等
  • 每一个对象都有一个锁,sleep不会释放锁

线程礼让

  • 让当前正在执行的线程暂停,但不阻塞
  • 将线程从运行状态转为就绪状态
  • 让CPU重新调度,礼让不一定成功,看CPU心情
public class TestYield {
    public static void main(String[] args) {
        MyYield myYield = new MyYield();
        new Thread(myYield,"a").start();
        new Thread(myYield,"b").start();
    }
}

class MyYield implements Runnable{
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName()+"-->开始执行");
        Thread.yield();//礼让
        System.out.println(Thread.currentThread().getName()+"-->停止执行");
    }
}

线程强制执行

join插队,会让其他线程阻塞,别用这玩意

public class TestJoin implements Runnable{
    @Override
    public void run() {
        for (int i = 0; i < 10000; i++) {
            System.out.println("用户线程正在执行~");
        }
    }

    public static void main(String[] args) throws InterruptedException {
        TestJoin testJoin = new TestJoin();
        Thread thread = new Thread(testJoin);
        thread.start();

        for (int i = 0; i < 500; i++) {
            if (200 == i) {
                thread.join();//用户线程插队,主线程阻塞,等vip跑完了才就绪执行
            }
            System.out.println("主线程--->" + i);
        }
    }
}

检测线程状态

两个Thread.sleep()的受体不一样!

这里发现个问题,sleep后没有进入BLOCKED状态啊,不是说要进入阻塞状态吗

public class TestThreadState {
    public static void main(String[] args) throws InterruptedException {
        Thread thread = new Thread(() -> {
            for (int i = 0; i < 5; i++) {
                try {
                    Thread.sleep(1000);//用户线程等待1s 其间为TIMED_WAITING状态
                    System.out.println(Thread.currentThread().getName()+"<---用户线程");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            System.out.println("------------------");
        });

        //观察状态
        Thread.State state = thread.getState();
        System.out.println(state);

        //观察启动后的状态
        thread.start();
        state = thread.getState();
        System.out.println(state);

        while (state != Thread.State.TERMINATED) {//如果用户线程没有死掉,主线程等100ms,打印用户线程状态
            Thread.sleep(100);
            System.out.println(Thread.currentThread().getName()+"<---主线程");
            state = thread.getState();
            System.out.println(state);
        }
    }
}

线程优先级

  • Java提供一个线程调度器来监控进入就绪状态后的所有线程,按照优先级进行调度

  • 优先级1-10:(影响的是概率)

    • MIN_PRIORITY = 1
    • NORM_PRIORITY = 5
    • MAX_PRIORITY = 10
  • 方法:setPriority、getPriority

public class TestPriority {
    public static void main(String[] args) {
        System.out.println(Thread.currentThread().getName() + "---->" + Thread.currentThread().getPriority());
        MyPriority myPriority = new MyPriority();
        Thread t1 = new Thread(myPriority);
        Thread t2 = new Thread(myPriority);
        Thread t3 = new Thread(myPriority);
        Thread t4 = new Thread(myPriority);
        Thread t5 = new Thread(myPriority);
        Thread t6 = new Thread(myPriority);

        t1.start();

        t2.setPriority(1);
        t2.start();

        t3.setPriority(4);
        t3.start();

        t4.setPriority(Thread.MAX_PRIORITY);
        t4.start();

        t5.setPriority(8);
        t5.start();

        t6.setPriority(7);
        t6.start();
    }
}

class MyPriority implements Runnable{
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName() + "---->" + Thread.currentThread().getPriority());
    }
}

守护线程

daemon

  • 线程分为用户线程和守护线程
  • 虚拟机必须确保用户线程执行完毕
  • 虚拟机不用等待守护线程执行完毕
  • 如,后台记录日志,监控内存,垃圾回收等
public class TestDaemon {
    public static void main(String[] args) {
        God god = new God();
        You you = new You();

        Thread thread = new Thread(god);
        thread.setDaemon(true);
        thread.start();

        new Thread(you).start();
    }
}

class God implements Runnable {
    @Override
    public void run() {
        while (true) {
            System.out.println("上帝保佑着你");
        }
    }
}

class You implements Runnable {
    @Override
    public void run() {
        for (int i = 0; i < 36500; i++) {
            System.out.println("你一生都开心的活着");
        }
        System.out.println("-----goodbay world");
    }
}

线程同步

  • 当一个线程获得对象的排他锁,独占资源,其他线程必须等待
  • 一个线程持有锁,会导致其他所有需要此锁的线程挂起
  • 在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题
  • 如果一个优先级高的线程等待一个优先级低的线程释放锁,会导致优先级倒置,引起性能问题

案例:线程不安全的购票(buy方法加synchronized解决)

public class UnSafeBuyTicket {
    public static void main(String[] args) {
        BuyTicket buyTicket = new BuyTicket();

        new Thread(buyTicket, "苦逼的我").start();
        new Thread(buyTicket, "牛逼的你们").start();
        new Thread(buyTicket, "可恶的黄牛党").start();
    }
}

class BuyTicket implements Runnable {
    private int ticketNums = 10;
    boolean flag = true;

    @Override
    public void run() {
        while (flag) {
            try {
                buy();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    private void buy() throws InterruptedException {
        if (ticketNums <= 0) {
            flag = false;
            return;
        }

        Thread.sleep(100);

        System.out.println(Thread.currentThread().getName() + "买到" + ticketNums--);
    }
}

案例:线程不安全的银行(解决方法:run方法中的内容都放到synchronized (account) {}代码块中,要操作account所以所著它)

public class UnsafeBank {
    public static void main(String[] args) {
        Account account = new Account(100, "结婚基金");
        Drawing you = new Drawing(account, 50, "你");
        Drawing girlFriend = new Drawing(account, 100, "girlFriend");

        you.start();
        girlFriend.start();
    }
}

//银行 模拟取款
class Drawing extends Thread{
    Account account;//账户
    int drawingMoney;//取了多少钱
    int nowMoney;//现在手里有多少钱

    public Drawing(Account account, int drawingMoney, String name) {
        super(name);//给线程设置名字
        this.account = account;
        this.drawingMoney = drawingMoney;
    }

    //取钱
    @Override
    public void run() {
        //判断有没有钱
        if (account.money - drawingMoney < 0) {
            System.out.println(Thread.currentThread().getName() + "钱不够,取不了");
            return;
        }

        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        //卡内余额=卡内余额 - 取的钱
        account.money = account.money - drawingMoney;
        //你的手里的钱
        nowMoney = nowMoney + drawingMoney;

        System.out.println(account.name + "余额为:" + account.money);
        //因为继承关系,this.getName()就是Thread.currentThread().getName()
        System.out.println(this.getName()+"手里的钱"+nowMoney);
    }
}

class Account{
    int money;//余额
    String name;//卡名

    public Account(int money, String name) {
        this.money = money;
        this.name = name;
    }
}

案例:线程不安全的集合(解决方法:操作集合之前先将它锁住synchronized (strings) {})

import java.util.ArrayList;

public class UnSafeList {
    public static void main(String[] args) throws InterruptedException {
        ArrayList<String> strings = new ArrayList<>();
        for (int i = 0; i < 10000; i++) {
            new Thread(()->{
                strings.add(Thread.currentThread().getName());
                //问题出在可能会有多个线程同时给集合中的某一项赋值 add了10000次实际却不足10000项
            }).start();
        }
        Thread.sleep(3000);
        System.out.println(strings.size());
    }
}

同步方法

Synchronized方法和Synchronized块

  • 同步块:synchronized(Obj){},Obj称之为同步监视器(Obj可以是任何对象,但是推荐使用共享资源作为同步监视器)

  • 若一个大的方法声明为Synchronized将会影响效率

  • 同步方法中无需指定同步监视器,因为同步方法的同步监视器就是this,就是这个对象本身,或者class

  • 同步监视器的执行过程:

    • 第一个线程访问,锁定同步监视器,执行其中代码
    • 第二个线程访问,发现同步监视器被锁定,无法访问
    • 第一个线程访问完毕,解锁同步监视器
    • 第二个线程访问,发现同步监视器没有锁,然后锁定并访问

CopyOnWriteArrayList

import java.util.concurrent.CopyOnWriteArrayList;

//测试JUC安全类型集合 CopyOnWriteArrayList
public class TestJUC {
    public static void main(String[] args) {
        CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>();
        for (int i = 0; i < 10000; i++) {
            new Thread(() -> {
                list.add(Thread.currentThread().getName());
            }).start();
        }

        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(list.size());
    }
}

死锁

产生死锁的4个必要条件(干掉其中任一条件即可消除死锁)

  • 互斥条件:一个资源每次只能被一个进程使用
  • 请求与保持条件:一个资源因请求资源而阻塞时,对已获得的资源保持不放
  • 不剥夺条件:进程已获得资源,在未使用完之前,不能强行剥夺
  • 循环等待条件:若干线程之间形成一种头尾相接的循环等待资源的关系

案例(解决办法:调整synchronized位置)

//死锁:多个线程相互抱着对方的资源,形成僵持
public class DeadLock {
    public static void main(String[] args) {
        Makeup g1 = new Makeup(0, "灰姑凉");
        Makeup g2 = new Makeup(1, "白雪公主");

        g1.start();
        g2.start();
    }
}

//口红
class Lapstick{
}

//镜子
class Mirror{
}

//化妆
class Makeup extends Thread {
    //需要的资源
    static Lapstick lapstick = new Lapstick();
    static Mirror mirror = new Mirror();

    int choice;//选择
    String girlName;

    public Makeup(int choice, String girlName) {
        this.choice = choice;
        this.girlName = girlName;
    }

    @Override
    public void run() {
        try {
            makeup();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    public void makeup() throws InterruptedException {
        if (0 == choice) {
            synchronized (lapstick) {
                System.out.println(this.girlName + "获得口红的锁");
                Thread.sleep(1000);
                synchronized (mirror) {
                    System.out.println(this.girlName + "获得镜子的锁");
                }
            }
        }else{
            synchronized (mirror) {
                System.out.println(this.girlName + "获得镜子的锁");
                Thread.sleep(2000);
                synchronized (lapstick) {
                    System.out.println(this.girlName + "获得口红的锁");
                }
            }
        }
    }
}

Lock

JUC并发编程下的类

  • 显示定义同步锁对象来实现线程同步
  • java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的工具
  • ReentrantLock类(可重入锁)实现了Lock,在实现线程安全的控制中较为常用

案例

import java.util.concurrent.locks.ReentrantLock;

public class TestLock {
    public static void main(String[] args) {
        TestLock2 testLock2 = new TestLock2();
        new Thread(testLock2).start();
        new Thread(testLock2).start();
        new Thread(testLock2).start();
    }
}

class TestLock2 implements Runnable{

    int ticketNums = 10;
    private final ReentrantLock lock = new ReentrantLock();

    @Override
    public void run() {
        while(true){
            /*未加锁之前
            * lock.lock();
                if (ticketNums > 0) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(ticketNums--);
                }else{
                    break;
                }
            * */
            try{
                lock.lock();
                if (ticketNums > 0) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(ticketNums--);
                }else{
                    break;
                }
            }finally {
                lock.unlock();
            }
        }
    }
}

Lock与synchronized对比

  • Lock是显式锁(手动开启和关闭)synchronized是隐式锁,出了作用域自动释放
  • Lock只有代码块锁,synchronized有代码块和方法锁
  • 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类)
  • 优先使用顺序:Lock>同步代码块(已进入了方法体,分配了相应资源)>同步方法(在方法体之外)

线程通信

应用场景(生产者和消费者问题)

线程通信的方法

  • wait()表示线程一直等待,直到其他线程通知,与sleep不同,会释放锁
  • wait(long timeout)指定等待的毫秒数
  • notify()唤醒一个处于等待状态的线程
  • notifyAll()唤醒同一个对象上所有调用wait()方法的线程,优先级别高的线程优先调度

均是Object类的方法,都只能在同步方法或同步代码块中使用,否则会抛出异常IllegalMonitorStateException

image-20201029124624779

方案一:管程法

//测试:生产者消费者模型-->利用缓冲区解决:管程法
//生产者 消费者 产品 缓冲区
public class TestPC {
    public static void main(String[] args) {
        SynContainer synContainer = new SynContainer();
        new Product(synContainer).start();
        new Consumer(synContainer).start();
    }
}

class Product extends Thread {
    SynContainer synContainer;

    public Product(SynContainer synContainer) {
        this.synContainer = synContainer;
    }

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            synContainer.push(new Chicken(i));
            System.out.println("生产了" + i + "只鸡");
        }
    }
}

class Consumer extends Thread {
    SynContainer synContainer;

    public Consumer(SynContainer synContainer) {
        this.synContainer = synContainer;
    }

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println("消费了" + synContainer.pop().id + "只鸡");
        }
    }
}

class Chicken {
    int id;

    public Chicken(int id) {
        this.id = id;
    }
}

//缓冲区
class SynContainer {

    //需要一个容器大小
    Chicken[] chickens = new Chicken[10];
    //容器计数器
    int count = 0;

    //生产者放入产品
    public synchronized void push(Chicken chicken) {

        //如果容器满了,需等待消费者消费
        if (count == chickens.length) {
            //通知消费者消费,生产者等待
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        //如果没有满,丢入产品
        chickens[count] = chicken;
        count++;

        //通知消费者消费
        this.notifyAll();
    }    //消费者消费产品

    public synchronized Chicken pop() {

        //判断是否能消费
        if (count == 0) {
            //等待生产者生产,消费者等待
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        //如果可以消费
        count--;
        Chicken eat = chickens[count];

        //吃完了,通知生产者生产
        this.notifyAll();
        return eat;

    }
}

方案二:信号灯法

//生产者消费者问题 信号灯法 标志位解决
public class TestPC2 {
    public static void main(String[] args) {
        TV tv = new TV();
        new Player(tv).start();
        new Watcher(tv).start();
    }
}

//生产者:演员
class Player extends Thread {
    TV tv;

    public Player(TV tv) {
        this.tv = tv;
    }

    @Override
    public void run() {

        for (int i = 0; i < 20; i++) {
            if (i % 2 == 0) {
                this.tv.play("快乐大本营播放中");
            } else {
                this.tv.play("抖音:记录美好生活");
            }
        }
    }
}

//消费者:观众
class Watcher extends Thread {
    TV tv;

    public Watcher(TV tv) {
        this.tv = tv;
    }

    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            tv.watch();
        }
    }
}

//产品:节目
class TV {
    String voice;
    boolean flag = true;

    public synchronized void play(String voice) {
        if (!flag) {
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println("演员表演了" + voice);
        this.notifyAll();
        this.voice = voice;
        this.flag = !this.flag;
    }

    public synchronized void watch() {
        if (flag) {
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println("观看了:" + voice);
        this.notifyAll();
        this.flag = !this.flag;
    }
}

线程池

  • 提高响应速度(减少创建新线程的时间)

  • 降低资源消耗(重福利用线程池中的线程,不需要每次创建)

  • 便于线程管理

    • corePoolSize核心线程池大小
    • maximumPoolSize最大线程数
    • keepAliveTime线程没有任务时最多保持多上时间后会终止
  • Jdk5起提供了线程池相关API:ExecutorService和Executors

  • ExecutorService线程池接口,常见子类ThreadPoolExecutor

    • void execute(Runnable command):执行任务/命令,没有返回值,一般用来执行Runnable
    • Future submit(Callable task):执行任务,有返回值,一般用来执行Callable
    • void shutdown():关闭连接池
  • Executors:工具类、线程池的工厂类、用于创建并返回不同类型的线程池

练习

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class TestPool {
    public static void main(String[] args) {
        //创建线程池服务 创建线程池 参数为线程池大小
        ExecutorService service = Executors.newFixedThreadPool(10);

        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());

        //关闭连接
        service.shutdown();
    }
}

class MyThread implements Runnable {
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName());
    }
}

三种线程启动方式

练习

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;

public class ThreadNew {
    public static void main(String[] args) {
        new MyThread1().start();

        new Thread(new MyThread2()).start();

        FutureTask<Integer> task = new FutureTask<>(new MyThread3());
        new Thread(task).start();
        //打印返回值
        try {
            Integer integer = task.get();
            System.out.println(integer);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }
}

class MyThread1 extends Thread{
    @Override
    public void run() {
        System.out.println("继承Thread方式");
    }
}

class MyThread2 implements Runnable{
    @Override
    public void run() {
        System.out.println("实现Runnable接口方法");
    }
}

class MyThread3 implements Callable<Integer>{
    @Override
    public Integer call() throws Exception {
        System.out.println("实现Callable接口方式");
        return 100;
    }
}
posted @ 2020-10-29 14:33  夜雨秋池  阅读(53)  评论(0编辑  收藏  举报