深度学习入门(10):卷积神经网络(CNN)
卷积层和池化层的实现
四维数组
from collections import OrderedDict
import numpy as np
from torch import nn
x = np.random.rand(10,1,27,28)#随机生成数据
# x.shape
x[0,0]
基于im2col(image to column)的展开
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
"""
Parameters
----------
input_data : 由(数据量, 通道, 高, 长)的4维数组构成的输入数据
filter_h : 滤波器的高
filter_w : 滤波器的长
stride : 步幅
pad : 填充
Returns
-------
col : 2维数组
"""
N, C, H, W = input_data.shape
out_h = (H + 2*pad - filter_h)//stride + 1
out_w = (W + 2*pad - filter_w)//stride + 1
img = np.pad(input_data, [(0,0), (0,0), (pad, pad), (pad, pad)], 'constant')
col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))
for y in range(filter_h):
y_max = y + stride*out_h
for x in range(filter_w):
x_max = x + stride*out_w
col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]
col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N*out_h*out_w, -1)
return col
x1 = np.random.rand(1,3,7,7)
col1 = im2col(x1, 5, 5, stride=1, pad=0)
print(col1.shape)
x2 = np.random.rand(10,3,7,7)
col2 = im2col(x2, 5, 5, stride=1, pad=0)
print(col2.shape)
卷积层
class Convolution:
def __init__(self,W,b,stride=1,pad=0):
self.W = W
self.b = b
self.stride = stride
self.pad = pad
def forward(self,x):
FN,C,FH,FW = x.shape
N,C,H,W = x.shape
out_h = (H + 2*self.pad - FH)//self.stride + 1
out_w = (W + 2*self.pad - FW)//self.stride + 1
col = im2col(x,FH,FW,stride=self.stride,pad=self.pad)
col_W = self.W.reshape(FN,-1).T
out = np.dot(col,col_W) + self.b
out = out.reshape(N,out_h,out_w,-1).transpose(0,3,1,2)
return out
池化层
class Pooling:
def __init__(self,pool_h,pool_w,stride=1,pad=0):
self.pool_h = pool_h
self.pool_w = pool_w
self.stride = stride
self.pad = pad
def forward(self,x):
N,C,H,W = x.shape
out_h = (H + 2*self.pad - self.pool_h)//self.stride + 1
out_w = (W + 2*self.pad - self.pool_w)//self.stride + 1
#展开(1)
col = im2col(x,self.pool_h,self.pool_w,stride=self.stride,pad=self.pad)
col = col.reshape(-1,self.pool_h*self.pool_w)
#最大值(2)
out = np.max(col,axis=1)
#转换(3)
out = out.reshape(N,out_h,out_w,C).transpose(0,3,1,2)
return out
CNN的实现
class Affine:
def __init__(self,W,b):
self.W = W
self.b = b
self.x = None
self.dW = None
self.db = None
def forward(self,x):
self.x = x
out = np.dot(x,self.W) + self.b
return out
def backward(self,dout):
dx = np.dot(dout,self.W.T)
self.dW = np.dot(self.x.T,dout)
self.db = np.sum(dout,axis=0)
return dx
class SoftmaxWithLoss:
def __init__(self):
self.loss = None #损失
self.y = None #softmax的输出
self.t = None #监督数据
def forward(self,x,t):
self.t = t
self.y = softmax(x)
self.loss = cross_entropy_error(self.y,self.t)
return self.loss
def backward(self,dout=1):
batch_size = self.t.shape[0]
dx = (self.y - self.t) / batch_size
return dx
class SimpleConvNet:
def __init__(self, input_dim=(1, 28, 28),
conv_param={'filter_num':30, 'filter_size':5,
'pad':0, 'stride':1},
hidden_size=100, output_size=10, weight_init_std=0.01):
filter_num = conv_param['filter_num']
filter_size = conv_param['filter_size']
filter_pad = conv_param['pad']
filter_stride = conv_param['stride']
input_size = input_dim[1]
conv_output_size = (input_size - filter_size + 2*filter_pad) / \
filter_stride + 1
pool_output_size = int(filter_num * (conv_output_size/2)*(conv_output_size/2))
#参数的初始化
self.params={}
self.params['w1'] = weight_init_std * \
np.random.randn(filter_num, filter_size, filter_size, filter_num)
self.params['b1']=np.zeros(filter_num)
self.params['w2']=weight_init_std*\
np.random.randn(pool_output_size, hidden_size)
self.params['b2']=np.zeros(hidden_size)
self.params['w3']=weight_init_std* np.random.randn(output_size, hidden_size)
self.params['b3']=np.zeros(hidden_size)
#生成必要的层
self.layers = OrderedDict()
self.layers['conv1'] = Convolution(self.params['w1'],self.params['b1'],stride=conv_param['stride'],pad=conv_param['pad'])
self.layers['Relu1']=nn.ReLU()
self.layers['Pool1']=Pooling(pool_h=2,pool_w=2,stride=2)
self.layers['Affine']=Affine(self.params['w2'],self.params['b2'])
self.layers['Relu2']=nn.ReLU()
self.layers['Affine2']=Affine(self.params['w3'],self.params['b3'])
self.last_layer = SoftmaxWithLoss()
def predict(self,x):
for layer in self.layers.values():
x = layer.forward(x)
return x
def loss(self,x,t):
y = self.predict(x)
return self.lastLayer.forward(y,t)
def gradient(self, x, t):
# forward
self.loss(x, t)
# backward
dout = 1
dout = self.lastLayer.backward(dout)
layers = list(self.layers.values())
layers.reverse()
for layer in layers:
dout = layer.backward(dout)
# 设定
grads = {}
grads['W1'] = self.layers['Conv1'].dW
grads['b1'] = self.layers['Conv1'].db
grads['W2'] = self.layers['Affine1'].dW
grads['b2'] = self.layers['Affine1'].db
grads['W3'] = self.layers['Affine2'].dW
grads['b3'] = self.layers['Affine2'].db
return grads
参考资料
《深度学习入门:基于python的理论与实践》