深度学习入门(8):一些简单层的实现

乘法层

class MulLayer:
    def __init__(self):
        self.x = None
        self.y = None
    
    def forward(self,x,y):
        self.x = x 
        self.y = y 
        out = x*y 
        return out
    
    def backward(self,dout):
        dx = dout * self.y
        dy = dout * self.x
        
        return dx,dy

具体实例

apple = 100
apple_num = 2 
tax = 1.1

#layer
mul_apple_layer = MulLayer()
mul_tax_layer = MulLayer()

#forward
apple_price = mul_apple_layer.forward(apple,apple_num)
price = mul_tax_layer.forward(apple_price,tax)

print(price)

#backward 
dprice = 1
dapple_price,dtax = mul_tax_layer.backward(dprice)
dapple,dapple_num = mul_apple_layer.backward(dapple_price)

print(dapple,dapple_num,dtax)

加法层的实现

class AddLayer:
    def __init__(self):
        pass
    
    def forward(self,x,y):
        out = x + y
        return out
    
    def backward(self,dout):
        dx = dout * 1
        dy = dout * 1
        return dx,dy
    

例子:购买2个苹果和3个橘子

apple = 100
apple_num =2
orange = 150
orange_num =3
tax = 1.1

#layer
mul_apple_layer = MulLayer()
mul_orange_layer = MulLayer()
add_apple_orange_layer = AddLayer()
mul_tax_layer = MulLayer()

#forward
apple_price = mul_apple_layer.forward(apple,apple_num)
orange_price = mul_orange_layer.forward(orange,orange_num)
all_price = add_apple_orange_layer.forward(apple_price,orange_price)
price = mul_tax_layer.forward(all_price,tax)
print(price)

#backward
dprice = 1
dall_price,dtax = mul_tax_layer.backward(dprice)
dapple_price,dorange_price = add_apple_orange_layer.backward(dall_price)
dapple,dapple_num = mul_apple_layer.backward(dapple_price)
dorange,dorange_num = mul_orange_layer.backward(dorange_price)
print(dapple_num,dapple,dorange,dorange_num,dtax)

激活函数层的实现

ReLU层

class ReLU:
    def __init__(self):
        self.mask = None
    
    def forward(self,x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0
        
        return out
    
    def backward(self,dout):
        dout[self.mask] = 0
        dx = dout
        
        return dx
import numpy as np
x = np.array([[1.0,-0.5],[-2.0,3.0]])
print(x)
mask = (x<=0)
print(mask)

Sigmoid层

class Sigmoid:
    def __init__(self):
        self.out = None
        
    def forward(self,x):
        out = 1 / (1 + np.exp(-x))
        self.out = out
        
        return out
    
    def backward(self,dout):
        dx = dout * (1.0 - self.out) *self.out
        
        return dx

Affine/Softmax层的实现

Affine层

X = np.random.rand(2)
W = np.random.rand(2,3)
b = np.random.rand(3)

print(X.shape)
print(W.shape)
print(b.shape)
Y = X.dot(W) + b
print(Y)
class Affine:
    def __init__(self,W,b):
        self.W = W
        self.b = b
        self.x = None
        self.dW = None
        self.db = None
    
    def forward(self,x):
        self.x = x
        out = np.dot(x,self.W) + self.b
        
        return out
    
    def backward(self,dout):
        dx = np.dot(dout,self.W.T)
        self.dW = np.dot(self.x.T,dout)
        self.db = np.sum(dout,axis=0)
        
        return dx
    

Softmax-with-Loss层

def cross_entropy_error(y,t):
    if y.ndim == 1:
        t = t.reshape(-1,t.size)
        y = y.reshape(-1,y.size)
        
    batch_size = y.shape[0]
    return -np.sum(t*np.log(y+1e-7))/batch_size

def softmax(a):
    exp_a = np.exp(a)
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a
    return y

class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None #损失
        self.y = None #softmax的输出
        self.t = None #监督数据
        
    def forward(self,x,t):
        self.t = t 
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y,self.t)
        
        return self.loss
    
    def backward(self,dout=1):
        batch_size = self.t.shape[0]
        dx = (self.y - self.t) / batch_size
        
        return dx

参考资料

《深度学习入门:基于python的理论与实践》

posted @ 2025-03-06 21:05  屈臣  阅读(4)  评论(0)    收藏  举报