深度学习入门 (4)softmax函数的实现

softmax函数实现

import numpy as np

a = np.array([0.3,2.9,4.0])
exp_a = np.exp(a)
print(exp_a)

sum_exp_a = np.sum(exp_a)
print(sum_exp_a)
y = exp_a / sum_exp_a
print(y)


def softmax(a):
    exp_a = np.exp(a)
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a
    return y

a = np.array([1010,1000,990])
# np.exp(a)
c = np.max(a)
a-c

y=np.exp(a-c)/np.sum(np.exp(a-c))
def softmax_2(a):
    c = np.max(a)
    exp_a = np.exp(a-c)
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a
    
    return y
a = np.array([0.3,2.9,0.4])
y = softmax_2(a)
print(y)
posted @ 2025-03-06 16:46  屈臣  阅读(26)  评论(0)    收藏  举报