随笔分类 -  machine learning 相关

机器学习相关知识
摘要:Hypothesis: \[{h_\theta }\left( x \right) = {\theta ^T}x = {\theta _0} + {\theta _1}{x_1} + {\theta _2}{x_2} + ... + {\theta _n}{x_n}\] 参数(Parameters) 阅读全文
posted @ 2018-10-22 21:13 qkloveslife 阅读(851) 评论(0) 推荐(0)
摘要:Multiple features (variables) Size x1 Number of bedrooms x2 Number of floors x3 Age of home(year) x4 Price y Notation: n = number of features x(i) = i 阅读全文
posted @ 2018-10-22 20:17 qkloveslife 阅读(281) 评论(0) 推荐(0)
摘要:梯度下降算法 重复直到收敛{ \[{\theta _j}: = {\theta _j} - \alpha \frac{\partial }{{\partial {\theta _j}}}J\left( {{\theta _0},{\theta _1}} \right)\left( {for{\rm{ 阅读全文
posted @ 2018-10-22 19:30 qkloveslife 阅读(1037) 评论(0) 推荐(0)
摘要:Have some function J(θ0, θ1), generally J(θ0, θ1,θ2, θ3,..., θn) Want: \[\mathop {\min }\limits_{{\theta _0},{\theta _1}} J\left( {{\theta _0},{\theta 阅读全文
posted @ 2018-10-22 12:43 qkloveslife 阅读(546) 评论(0) 推荐(0)
摘要:Training Set 训练集 Hypothesis: \[{h_\theta }\left( x \right) = {\theta _0} + \theta {x}\] Notation: θi's: Parameters θi's: 参数 How to choose θi's? 如何选择θi 阅读全文
posted @ 2018-10-21 11:32 qkloveslife 阅读(3130) 评论(0) 推荐(0)
摘要:Notation: m = Number of training examples x's = "input" variable / features y's = "output" variable / "target" variable (x, y) - one training example 阅读全文
posted @ 2018-10-21 07:30 qkloveslife 阅读(239) 评论(0) 推荐(0)
摘要:无监督学习 Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data 阅读全文
posted @ 2018-10-16 18:07 qkloveslife 阅读(379) 评论(0) 推荐(0)
摘要:监督学习 (Supervised Learning) "right answers" given (监督学习的特点是:给定“正确答案”) In supervised learning, we are given a data set and already know what our correct 阅读全文
posted @ 2018-10-16 00:03 qkloveslife 阅读(310) 评论(0) 推荐(0)
摘要:机器学习的定义 定义1 Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed. Arth 阅读全文
posted @ 2018-10-15 17:11 qkloveslife 阅读(499) 评论(0) 推荐(0)