【PAT天梯赛】长城

题面


原题链接:【PAT天梯赛】长城

解法

栈+计算几何:
  这道题最主要的还是分析什么样的点需要建立烽火台:
  
  A:(4,4),B:(3,3),C:(2,1),D:(1,5)
  如图,A为总部,显然答案就是1,只要建立在B即可。为什么呢,我们可以发现CA×BA0BACA的逆时针方向),所以在B需要建立烽火台,而其他的点都不符合这样的条件
  其实,我们可以发现,对于当前点i,如果对于任意一个建立了烽火台的点j都有点i+1ij之间构成了上面的关系,那么i就需要建立烽火台,这样我们可以得到一个On2的算法
  然后我们可以使用一个栈来维护(类似于求凸包时的那个栈)

复杂度

O(nlogn

代码

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<vector>
#define Rint register int
#define Lint long long int
using namespace std;
const int N=100010;
struct point
{
    double x,y;
    friend point operator - (point a,point b)
    {
        return (point){ a.x-b.x,a.y-b.y };
    }
    friend double operator * (point a,point b)
    {
        return a.x*b.y-b.x*a.y;
    }
}p[N];
bool vis[N];
int q[N],cnt;
int n,ans;
double cross(point p1,point p2,point p3)
{
    return (p2-p1)*(p3-p1);
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)   scanf("%lf%lf",&p[i].x,&p[i].y);
    for(int i=1;i<=n;i++)
    {
        if( cnt>=1 )
        {
            while( cnt>=2 && cross( p[q[cnt-2]],p[q[cnt-1]],p[i] )<=0 )   cnt--;
            vis[q[cnt-1]]=1;
        }
        q[cnt++]=i;
    }
    for(int i=2;i<=n;i++)   ans+=vis[i];
    printf("%d\n",ans);
    return 0;
}
posted @ 2017-11-09 21:49  清疚  阅读(110)  评论(0)    收藏  举报