[51Nod1238]最小公倍数之和-V3

题意

  给定n,求i=1nj=1nlcm(i,j)

解法

  本题有两种化简式子的方法,虽然最后的复杂度都是O(n23),但是代码难度却截然不同
  壹:i=1nj=1nlcm(i,j)=d=1nd1i=1nj=1nij[gcd(i,j)=1]

=d=1nd1d2i=1ndj=1ndij[gcd(i,j)=1]

=d=1ndp=1ndμ(p)p2i=1ndpj=1ndpij

  令w=dpF(n)=i=1nj=1nij,则有:
=w=1nF(nw)wd|wμ(wd)wd=w=1nF(nw)wd|wμ(d)d

  只看后半部分:
w=1nwd|wμ(d)d=w=1nd|wμ(d)dw=p=1nd=1nppd2μ(d)=d=1nd2μ(d)p=1ndp

  令S(n)=i=1ni,有:=d=1nS(nd)d2μ(d)
  然后还是只看后半部分:
[n=1]=d|nμ(d)

w=1nd|wd2μ(d)(wd)2=w=1nw2[d|wμ(d)]=w=1nw2[w=1]=1

w=1nd|wd2μ(d)(wd)2=k=1nk2d=1nkd2μ(d)

12d=1nd2μ(d)=1k=2nk2d=1nkd2μ(d)

  然后再一层一层套回去,很难写……
  贰:i=1nj=1nlcm(i,j)=d=1nd1i=1nj=1nij[gcd(i,j)=1]
=d=1ndi=1ndj=1ndij[gcd(i,j)=1]

  只看后面:
i=1ndj=1ndij[gcd(i,j)=1]=i=1ndij=1ndj[gcd(i,j)=1]=2i=1ndij=1ij[gcd(i,j)=1]1

=2i=1ndiiφ(i)+[i=1]21=i=1ndi2φ(i)=i=1ndp|ip2φ(p)(ip)2

=p=1ndp2t=1ndpt2φ(t)=w2(w+1)24k=2wk2i=1wki2φ(i)w=nd

复杂度

O(n23)

代码

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<map>
#define Lint long long int
using namespace std;
const int m2=500000004;
const int m6=166666668;
const int N=10001000;
const int M=1e9+7;
bool vis[N];
Lint phi[N],n;
int pri[N/10],cnt;
int ans;
map<Lint,int> f;
int F(Lint n)
{
    n%=M;n=1ll*n*(n+1)%M;
    return 1ll*n*m2%M;
}
int G(Lint n)
{
    n%=M;int x=1ll*(n+1)*(2*n+1)%M;
    return n*x%M*m6%M;
}
int H(Lint n)   { return 1ll*phi[n]*(n%M*(n%M)%M)%M; }
void Prepare()
{
    Lint L=min( 1ll*N,n+1 );
    phi[1]=1;
    for(int i=2;i<L;i++)
    {
        if( !vis[i] )   pri[++cnt]=i,phi[i]=i-1;
        for(int j=1;j<=cnt;j++)
        {
            int x=pri[j]*i;
            if( x>=L )   break ;
            vis[x]=1;
            if( i%pri[j] )   phi[x]=phi[i]*phi[pri[j]];
            else
            {
                phi[x]=phi[i]*pri[j];
                break ;
            }
        }
    }
    for(int i=1;i<L;i++)   phi[i]=(phi[i-1]+H(i))%M;
}
int cal(Lint n)
{
    if( n<N )   return phi[n];
    if( f.count(n) )   return f[n];
    int ret=1ll*F(n)*F(n)%M;
    Lint x=2;
    while( x<=n )
    {
        Lint y=n/(n/x);
        ret=(ret-1ll*(G(y)-G(x-1)+M)%M*cal(n/x)%M+M)%M;
        x=y+1;
    }
    return f[n]=ret;
}
int main()
{
    Lint x=1;
    scanf("%lld",&n);
    Prepare();
    while( x<=n )
    {
        Lint y=n/(n/x);
        ans+=1ll*(y-x+1)%M*(y%M+x%M)%M*m2%M*cal(n/x)%M;
        ans%=M,x=y+1;
    }
    printf("%d\n",ans);
    return 0;
}
posted @ 2018-02-13 08:55  清疚  阅读(78)  评论(0)    收藏  举报