费曼积分法
Leibniz Integral Rule
\(\newcommand{\d}{\text{ d}}\)假设二元函数\(f(x,y)\)连续,可以证明\(I(y)=\displaystyle\int_a^{b}f(x,y)\d x\)连续。连续意味着:\(\lim\limits_{y\to y_0}I(y)=I(y_0)\),所以\(\lim\limits_{y\to y_0}I(y)=\displaystyle\int_a^b f(x,y_0)\d x=\displaystyle\int_a^b \left[\lim\limits_{y\to y_0}f(x,y)\right]\d x\)。
由此,我们可以证明\(\dfrac{\d}{\d y}I(y)=\displaystyle\int_a^b \left[\dfrac{\part}{\part y}f(x,y)\right]\d x\):对于任意的\(\Delta y>0\),我们有\(\dfrac{I(y+\Delta y)-I(y)}{\Delta y}=\dfrac{\displaystyle\int_a^{b}f(x,y+\Delta y)\d x-\displaystyle\int_a^{b}f(x,y)\d x}{\Delta y}\)\(=\dfrac{\displaystyle\int_a^{b}f(x,y+\Delta y)-f(x,y)\d x}{\Delta y}\)。根据一元函数的微分中值定理,存在\(0<\xi<1\)使得\(f(x,y+\Delta y)-f(x,y)=\Delta y \cdot \dfrac{\part}{\part y}f(x,y+\xi\cdot\Delta y)\)。于是\(\dfrac{I(y+\Delta y)-I(y)}{\Delta y}=\displaystyle\int_a^{b}\dfrac{\part}{\part y}f(x,y+\xi\cdot \Delta y)\d x\)。两边同时令\(\Delta y\to 0\),得到\(\lim\limits_{\Delta y\to 0}\dfrac{I(y+\Delta y)-I(y)}{\Delta y}=\dfrac{\d}{\d y}I(y)=\lim\limits_{\Delta y\to 0}\displaystyle\int_a^{b}\dfrac{\part}{\part y}f(x,y+\xi\cdot \Delta y)\d x=\)\(\displaystyle\int_a^b \left[\dfrac{\part}{\part y}f(x,y)\right]\d x\)。
可见,对于连续函数,积分外的求导符号可以移到积分内:\(\dfrac{\d}{\d y}\displaystyle\int_a^b f(x,y)\d x=\displaystyle\int_a^b \left[\dfrac{\part}{\part y}f(x,y)\right]\d x\)。
Feynman's Trick
上面的定理可以帮助我们求解积分。
当求解定积分\(\displaystyle\int_0^1 \dfrac{x^2-1}{\ln x}\d x\)时,我们首先可以把它看作含参变量的定积分\(I(t)=\displaystyle\int_0^1 \dfrac{x^t-1}{\ln x}\d x\),那么只需解出\(I(2)\)。两边同时对\(t\)求导,得\(I'(t)=\dfrac{\d}{\d t}\displaystyle\int_0^1 \dfrac{x^t-1}{\ln x}\d x\),由Leibniz Integral Rule,右式等于\(\displaystyle\int_0^1 \dfrac{\part}{\part t}\dfrac{x^t-1}{\ln x}\d x=\displaystyle\int_0^1 \dfrac{x^{t}\ln x}{\ln x}\d x=\displaystyle\int_0^1 x^{t}\d x=\dfrac{1}{t+1}\)。所以\(I(t)=\displaystyle\int \dfrac{1}{t+1}\d t=\ln(t+1)+C\)。当\(t=0\)时,积分恒为0,因此\(C=0\)。代入\(t=2\),得到原积分的值为\(\ln 3\)。

浙公网安备 33010602011771号