机器学习sklearn(80):算法实例(三十七)回归(九)线性回归大家族(七)非线性问题:多项式回归(二)使用分箱处理非线性问题

2 使用分箱处理非线性问题

1. 导入所需要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
2. 创建需要拟合的数据集
rnd = np.random.RandomState(42) #设置随机数种子
X = rnd.uniform(-3, 3, size=100) #random.uniform,从输入的任意两个整数中取出size个随机数
#生成y的思路:先使用NumPy中的函数生成一个sin函数图像,然后再人为添加噪音
y = np.sin(X) + rnd.normal(size=len(X)) / 3 #random.normal,生成size个服从正态分布的随机数
#使用散点图观察建立的数据集是什么样子
plt.scatter(X, y,marker='o',c='k',s=20)
plt.show()
#为后续建模做准备:sklearn只接受二维以上数组作为特征矩阵的输入
X.shape
X = X.reshape(-1, 1)
3. 使用原始数据进行建模
#使用原始数据进行建模
LinearR = LinearRegression().fit(X, y)
TreeR = DecisionTreeRegressor(random_state=0).fit(X, y) #放置画布
fig, ax1 = plt.subplots(1) #创建测试数据:一系列分布在横坐标上的点
line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)
#将测试数据带入predict接口,获得模型的拟合效果并进行绘制
ax1.plot(line, LinearR.predict(line), linewidth=2, color='green',
         label="linear regression")
ax1.plot(line, TreeR.predict(line), linewidth=2, color='red',
         label="decision tree") #将原数据上的拟合绘制在图像上
ax1.plot(X[:, 0], y, 'o', c='k') #其他图形选项
ax1.legend(loc="best")
ax1.set_ylabel("Regression output")
ax1.set_xlabel("Input feature")
ax1.set_title("Result before discretization")
plt.tight_layout()
plt.show()
#从这个图像来看,可以得出什么结果?

4. 分箱及分箱的相关问题
from sklearn.preprocessing import KBinsDiscretizer
#将数据分箱
enc = KBinsDiscretizer(n_bins=10 #分几类?
                       ,encode="onehot") #ordinal
X_binned = enc.fit_transform(X)
#encode模式"onehot":使用做哑变量方式做离散化
#之后返回一个稀疏矩阵(m,n_bins),每一列是一个分好的类别
#对每一个样本而言,它包含的分类(箱子)中它表示为1,其余分类中它表示为0 X.shape
X_binned
#使用pandas打开稀疏矩阵
import pandas as pd
pd.DataFrame(X_binned.toarray()).head()
#我们将使用分箱后的数据来训练模型,在sklearn中,测试集和训练集的结构必须保持一致,否则报错
LinearR_ = LinearRegression().fit(X_binned, y)
LinearR_.predict(line) #line作为测试集
line.shape #测试
X_binned.shape #训练
#因此我们需要创建分箱后的测试集:按照已经建好的分箱模型将line分箱
line_binned = enc.transform(line)
line_binned.shape #分箱后的数据是无法进行绘图的
line_binned
LinearR_.predict(line_binned).shape
5. 使用分箱数据进行建模和绘图 
#准备数据
enc = KBinsDiscretizer(n_bins=10,encode="onehot")
X_binned = enc.fit_transform(X)
line_binned = enc.transform(line) #将两张图像绘制在一起,布置画布
fig, (ax1, ax2) = plt.subplots(ncols=2
                               , sharey=True #让两张图共享y轴上的刻度
                               , figsize=(10, 4))
#在图1中布置在原始数据上建模的结果
ax1.plot(line, LinearR.predict(line), linewidth=2, color='green',
         label="linear regression")
ax1.plot(line, TreeR.predict(line), linewidth=2, color='red',
         label="decision tree")
ax1.plot(X[:, 0], y, 'o', c='k')
ax1.legend(loc="best")
ax1.set_ylabel("Regression output")
ax1.set_xlabel("Input feature")
ax1.set_title("Result before discretization") #使用分箱数据进行建模
LinearR_ = LinearRegression().fit(X_binned, y)
TreeR_ = DecisionTreeRegressor(random_state=0).fit(X_binned, y) #进行预测,在图2中布置在分箱数据上进行预测的结果
ax2.plot(line #横坐标
         , LinearR_.predict(line_binned) #分箱后的特征矩阵的结果
         , linewidth=2
         , color='green'
         , linestyle='-'
         , label='linear regression')
ax2.plot(line, TreeR_.predict(line_binned), linewidth=2, color='red',
         linestyle=':', label='decision tree') #绘制和箱宽一致的竖线
ax2.vlines(enc.bin_edges_[0] #x轴
           , *plt.gca().get_ylim() #y轴的上限和下限
           , linewidth=1
           , alpha=.2) #将原始数据分布放置在图像上
ax2.plot(X[:, 0], y, 'o', c='k') #其他绘图设定
ax2.legend(loc="best")
ax2.set_xlabel("Input feature")
ax2.set_title("Result after discretization")
plt.tight_layout()
plt.show()

6. 箱子数如何影响模型的结果 
enc = KBinsDiscretizer(n_bins=5,encode="onehot")
X_binned = enc.fit_transform(X)
line_binned = enc.transform(line)
fig, ax2 = plt.subplots(1,figsize=(5,4))
LinearR_ = LinearRegression().fit(X_binned, y)
print(LinearR_.score(line_binned,np.sin(line)))
TreeR_ = DecisionTreeRegressor(random_state=0).fit(X_binned, y)
ax2.plot(line #横坐标
         , LinearR_.predict(line_binned) #分箱后的特征矩阵的结果
         , linewidth=2
         , color='green'
         , linestyle='-'
         , label='linear regression')
ax2.plot(line, TreeR_.predict(line_binned), linewidth=2, color='red',
         linestyle=':', label='decision tree')
ax2.vlines(enc.bin_edges_[0], *plt.gca().get_ylim(), linewidth=1, alpha=.2)
ax2.plot(X[:, 0], y, 'o', c='k')
ax2.legend(loc="best")
ax2.set_xlabel("Input feature")
ax2.set_title("Result after discretization")
plt.tight_layout()
plt.show()
7. 如何选取最优的箱数 
#怎样选取最优的箱子?
from sklearn.model_selection import cross_val_score as CVS
import numpy as np
pred,score,var = [], [], []
binsrange = [2,5,10,15,20,30]
for i in binsrange:
    #实例化分箱类
    enc = KBinsDiscretizer(n_bins=i,encode="onehot")
    #转换数据
    X_binned = enc.fit_transform(X)
    line_binned = enc.transform(line)
    #建立模型
    LinearR_ = LinearRegression()
    #全数据集上的交叉验证
    cvresult = CVS(LinearR_,X_binned,y,cv=5)
    score.append(cvresult.mean())
    var.append(cvresult.var())
    #测试数据集上的打分结果
    pred.append(LinearR_.fit(X_binned,y).score(line_binned,np.sin(line)))
#绘制图像
plt.figure(figsize=(6,5))
plt.plot(binsrange,pred,c="orange",label="test")
plt.plot(binsrange,score,c="k",label="full data")
plt.plot(binsrange,score+np.array(var)*0.5,c="red",linestyle="--",label = "var")
plt.plot(binsrange,score-np.array(var)*0.5,c="red",linestyle="--")
plt.legend()
plt.show()

 

 

 

posted @ 2021-07-03 09:50  秋华  阅读(183)  评论(0)    收藏  举报