20240520刷题总结
T1(状态置换,搜索与dp, dp存值结构体)
T376。
还是从搜索角度去考虑:时间,前i物品,最多拿多少。
这样我们去设计状态,我一开始设置:时间,前i,值是拿多少。会发现这样会爆。
其实换一下,优化效果更好。前i物品,最多拿j,用的最少时间。
实际转移就是背包。存值就存结构体。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2010, INF = 0x3f3f3f3f;
struct Node
{
int day, tim;
bool operator< (const Node& W) const
{
if (day != W.day) return day < W.day;
return tim < W.tim;
}
}f[N];
int n, t, m;
Node add(Node a, int b)
{
if (b > t) return {INF, INF}; //一天都放不下
Node c = {a.day, a.tim + b};
if (c.tim > t) c.day ++ , c.tim = b;
return c;
}
int main()
{
scanf("%d%d%d", &n, &t, &m);
for (int i = 1; i <= n; i ++ ) f[i] = {INF, INF};
f[0] = {1, 0}; //第1天
for (int i = 1; i <= n; i ++ )
{
int v;
scanf("%d", &v);
for (int j = i; j; j -- )
{
f[j] = min(f[j], add(f[j - 1], v));
}
}
for (int i = n; i; i -- )
{
if (f[i].tim <= t && f[i].day <= m)
{
printf("%d\n", i);
return 0;
}
}
puts("0");
return 0;
}
T2(数学题)
1949。
s->t, 首先构造方案。先往下走,走到不能走乘2,一直加,加到不能加乘,乘完减回来。

唯一有疑问的是乘完往不往下走1。假设乘完往下走,乘二至少剩下1个格。

中间大于等于一,因为最坏情况也是偶数。如果起点为奇数,那么数为2* (n - 1), 减n,是n - 2, 而n是严格>=2的。所以最起码不会更坏。
也就是1 + 1 <= (>=1) + 1
这样就行了。最后跳直接枚举就行了。 k * 2 - n + 1, (k + m) * 2 - n + m。其实也一样。
#include <bits/stdc++.h>
using namespace std;
int n, k, ans = 0;
int main() {
cin >> n >> k;
if (n >= k)
ans = n-k;
else {
int i=n, step=0;
for (;i<k;) {p
if (i * 2 > k)
ans = max(ans, step + 1 + i*2-k);
i++;
if (i % 2 == 0 && i/2 < n)
step = max(step+1, n-i/2 + 1);
else
step = step+1;
}
ans = max(ans, step);
}
cout << ans;
return 0;
}
T3:(回文,重新分类,dp套小dp,两个相互加中间中转)
2579
首先回文问题,从中间或两端走,这里从中间bfs。其实这个好想。

每次扩展相同字母。
其实极端情况能卡爆。就是每个都是a扩展。
这样就过不去了。考虑优化。这里两个相互加,我们可以考虑在中间加一个中转,这样不就行了?如何套呢?先扩展一条边的状态就行了,再扩展。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 410, M = 30, K = 60010;
int h[N], pre_h[N], e[K << 1], ne[K << 1], w[K << 1], idx;
bool flag[N][N];
int f[N][N], g[N][N][M];
int c[N];
struct Node
{
int x, y, c;
}q[5000010];
int n, m;
void add(int h[], int a, int b, int c)
{
e[ ++ idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx;
}
void bfs()
{
memset(f, 0x3f, sizeof f);
memset(g, 0x3f, sizeof g);
int hh = 0, tt = -1;
for (int i = 1; i <= n; i ++ ) q[ ++ tt] = {i, i, 0}, f[i][i] = 0;
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i != j && flag[i][j]) q[ ++ tt] = {i, j, 0}, f[i][j] = 1;
while (hh <= tt)
{
Node t = q[hh ++ ];
if (!t.c) //f
{
for (int i = h[t.y]; i; i = ne[i])
{
int j = e[i];
if (g[t.x][j][w[i]] > f[t.x][t.y] + 1)
{
g[t.x][j][w[i]] = f[t.x][t.y] + 1;
q[ ++ tt] = {t.x, j, w[i]};
}
}
}
else
{
for (int i = pre_h[t.x]; i; i = ne[i])
{
int j = e[i];
if (t.c != w[i]) continue;
if (f[j][t.y] > g[t.x][t.y][t.c] + 1)
{
f[j][t.y] = g[t.x][t.y][t.c] + 1;
q[ ++ tt] = {j, t.y, 0};
}
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
while (m -- )
{
int a, b;
char c;
scanf("%d %d %c", &a, &b, &c);
flag[a][b] = true; //单向边
add(h, a, b, (int)c - 'a' + 1), add(pre_h, b, a, (int)c - 'a' + 1);
}
bfs();
int k;
scanf("%d", &k);
for (int i = 0; i < k; i ++ )
{
scanf("%d", &c[i]);
if (i)
{
if (f[c[i - 1]][c[i]] < 1e9) printf("%d\n", f[c[i - 1]][c[i]]);
else puts("-1");
}
}
return 0;
}
T4(枚举,spfa要快一些)
T329。
枚举最短路上边边,跑最短路。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 1010, M = N * N;
int h[N], e[M], ne[M], w[M], idx;
int pre[N], prew[N];
bool st[N];
int d[N];
int n, m;
bool flag;
void add(int a, int b, int c)
{
e[ ++ idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx;
}
void spfa(int del)
{
queue<int> q;
flag = false;
memset(d, 0x3f, sizeof d);
d[1] = 0;
q.push(1);
while (q.size())
{
int t = q.front(); q.pop();
st[t] = false;
for (int i = h[t]; i; i = ne[i])
{
int j = e[i];
if (i == del) continue;
if (d[j] > d[t] + w[i])
{
pre[j] = t;
prew[j] = i;
d[j] = d[t] + w[i];
if (!st[j]) q.push(j), st[j] = true;
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c), add(b, a, c);
}
spfa(0);
int ans = d[n];
int k = n, w = prew[n];
while (k)
{
spfa(w);
w = prew[k];
k = pre[k];
ans = max(ans, d[n]);
}
cout << ans << endl;
return 0;
}
T5(分治:很值得看)
388。
精髓在于处理两点之间的权值。分治,直到两点在一块。不过具体怎么做没想清楚。几何推理法不在阐述,自己看代码。总体就是暴力交点。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 110, M = 2010;
struct Node { int x, y; } point[N], station[N];
int n, m, k;
int g[N][N];
bool st[N], used[N];
int dist[N];
double get_dist(Node a, Node b)
{
int dx = a.x - b.x;
int dy = a.y - b.y;
return sqrt(dx * dx + dy * dy);
}
int find(Node x)
{
double res = 0x3f3f3f3f, id = 0;
for (int i = 1; i <= k; i ++ )
{
if (get_dist(station[i], x) < res)
{
res = get_dist(station[i], x);
id = i;
}
}
return id;
}
int get(Node a, Node b)
{
int res = 0;
int sta = find(a), stb = find(b);
if (sta == stb) return 0;
Node c = {(a.x + b.x) >> 1, (a.y + b.y) >> 1};
int stc = find(c);
st[sta] = st[stb] = st[stc] = true;
if (sta != stc) get(a, c);
if (stb != stc) get(b, c);
for (int i = 1; i <= k; i ++ )
if (st[i]) res ++ ;
return res - 1;
}
void dijkstra() // 求1号点到n号点的最短路距离
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 1; i <= n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!used[j] && (t == -1 || dist[t] > dist[j]))
t = j;
for (int j = 1; j <= n; j ++ )
if (g[t][j]) dist[j] = min(dist[j], dist[t] + g[t][j]);
}
return;
}
int main()
{
scanf("%d%d%d", &k, &n, &m);
for (int i = 1; i <= k; i ++ ) scanf("%d%d", &station[i].x, &station[i].y);
for (int i = 1; i <= n; i ++ ) scanf("%d%d", &point[i].x, &point[i].y);
memset(g, 0x3f, sizeof g);
while (m -- )
{
memset(st, 0, sizeof st);
int a, b;
scanf("%d%d", &a, &b);
g[b][a] = g[a][b] = get(point[a], point[b]);
}
dijkstra();
for (int i = 1; i <= n; i ++ )
{
if (dist[i] > 1e9) puts("-1");
else printf("%d\n", dist[i]);
}
return 0;
}
最开始的代码。显然不对。(double呢?)
下次就不要犯了。
#include <bits/stdc++.h>
using namespace std;
int B, C, R;
struct Point {
double x, y;
}pb[105], pc[105];
int mapp[105][105];
bool flag[105] = {false};
int cover(double x, double y) {
int idx = 1, dis = (x - pb[1].x) * (x - pb[1].x) + (y - pb[1].y) * (y - pb[1].y);
for (int i=2; i<=B; i++) {
if ((x - pb[i].x) * (x - pb[i].x) + (y - pb[i].y) * (y - pb[i].y) < dis) {
idx = i;
dis = (x - pb[i].x) * (x - pb[i].x) + (y - pb[i].y) * (y - pb[i].y);
}
}
return idx;
}
void dfs(double x1, double y1, int coverA, double x2, double y2, int coverB) {
if ((x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) <= 1e-8)
return;
double midx = (x1+x2)/2;
double midy = (y1+y2)/2;
int coverC = cover(midx, midy);
flag[coverC] = true;
if (coverA != coverC) {
dfs(x1, y1, coverA, midx, midy, coverC);
}
if (coverB != coverC) {
dfs(midx, midy, coverC, x2, y2, coverB);
}
}
int calc(int u, int v) {
for (int i=1; i<=B; i++)
flag[i] = false;
int coverA = cover(pc[u].x, pc[u].y);
int coverB = cover(pc[v].x, pc[v].y);
flag[coverA] = flag[coverB] = true;
if (coverA != coverB)
dfs(pc[u].x, pc[u].y, coverA, pc[v].x, pc[v].y, coverB);
int ans = 0;
for (int i=1; i<=B; i++) {
if (flag[i])
ans++;
}
return ans-1;
}
int dis[105];
bool vis[105] = {false};
void dij() {
for (int i=1; i<=C; i++) {
dis[i] = 1000000;
}
dis[1] = 0;
for (int i=1; i<=C; i++) {
int idx = 0, m = 1000005;
for (int j=1; j<=C; j++) {
if (!vis[j] && dis[j] < m) {
idx = j;
m = dis[j];
}
}
vis[idx] = true;
for (int j=1; j<=C; j++) {
if (mapp[idx][j] != -1 && !vis[j])
dis[j] = min(dis[j], dis[idx] + mapp[idx][j]);
}
}
}
int main() {
cin >> B >> C >> R;
for (int i=1; i<=B; i++) {
cin >> pb[i].x >> pb[i].y;
}
for (int i=1; i<=C; i++) {
cin >> pc[i].x >> pc[i].y;
}
for (int i=1; i<=C; i++)
for (int j=1; j<=C; j++)
mapp[i][j] = -1;
for (int i=1; i<=R; i++) {
int u, v;
cin >> u >> v;
if (u != v && mapp[u][v] == -1) {
mapp[u][v] = calc(u, v);
mapp[v][u] = mapp[u][v];
}
}
dij();
for (int i=1; i<=C; i++) {
if (dis[i] == 1000000)
cout << -1 << endl;
else
cout << dis[i] << endl;
}
return 0;
}
看了这份,我神清气爽。原来是这样:直接分治然后标记就行了。在最大的那个函数里面统计标记个数。这么简单,记住吧。
T6(二分好题,基础算法,区间和转前缀和,分数规划)
拿到这个题,哇,好复杂,>=m就中区间sum/l的最大值。
发现了什么?????从另一个角度看,竟然是分数规划。(我刚发现)。(二分课件)。每个点俩权值,一个在上面(a[i]),一个在下面(1)。
按原来的思路吧。二分答案。变化一下。存不存在长度>=m的区间 ,sum>= mid * l,也就是很简单了。移项后等价于(sum = a[l] + .. + a[r] 然后移过来一个mid,)每个点sum-mid,问存不存在>=0的长度>=m的区间。 直接枚举每个点(将所有区间按照右端点分类),然后其实是前缀min.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1000010;
int n, m;
int h[N];
double s[N];
bool check(double mid) //是否存在length>=m的区间和>=l * mid
{
double minv = 0, res = -0x3f3f3f3f;
s[0] = 0;
for (int i = 1; i <= n; i ++ )
{
s[i] = s[i - 1] + h[i] - mid;
if (i >= m) minv = min(minv, s[i - m]);
if (i >= m) res = max(res, s[i] - minv);
}
return res >= 0;
}
int main()
{
scanf("%d%d", &n, &m);
double r = 0;
for (int i = 1; i <= n; i ++ ) scanf("%d", &h[i]), r = max(r, (double)h[i]);
double l = 0;
while (r - l > 1e-5)
{
double mid = (l + r) / 2;
if (check(mid)) l = mid;
else r = mid;
}
printf("%lld", (long long)(r * 1000));
return 0;
}

浙公网安备 33010602011771号