【自学嵌入式:stm32单片机】PWMI模式测频率和占空比
PWMI模式测频率和占空比
接线图

配置图

目前我们给的标准频率是1MHz,计数器自大只能计到65535,所以所测量的最低频率是1M/65535,这个值大概是15Hz,如果信号频率再低,计数器就要溢出了,如果想再价降低一些最低频率限制,我们可以把预分频Prescaler再加大点,这样标准频率就更低,所支持测量的最低频率也更低
对于测量频率的上限,最大频率没有明显的界限,因为随着待测频率的增大,误差也会逐渐增大,非要找上限,是标准频率1MHz,信号频率比标准频率还高,肯定测不了,最大频率要看对误差的要求,要求误差等于千分之一,频率为上限,这个上限就是1M/1000 = 1KHz,如果要求误差可以到百分之一,那频率上限就是1M/100 = 10KHz,提高频率上限,把PSC降低一些,提高标准频率,上限就会提高,如果频率还要更高,考虑使用测频法,这里是测周法,除了测量误差外,还会有晶振误差。
代码实现
标准库实现
已开源到:https://gitee.com/qin-ruiqian/jiangkeda-stm32
PWM.c和上一个文章一样
IC.h
#ifndef __IC_H
#define __IC_H
void IC_Init(void);
uint32_t IC_GetFreq(void);
uint32_t IC_GetDuty(void);
#endif
IC.c
#include "stm32f10x.h" // Device header
//初始化捕获输入
void IC_Init(void)
{
//IC初始化是每个通道共用一个初始化函数
//初始化PA0
//打开APB2总线的GPIOA外设并开启时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入
//普通推挽/开漏输出,引脚控制权是来自于输出数据寄存器的
//如果想用定时器来控制引脚,就需要使用复用开漏/推挽输出的模式
//在这里输出数据寄存器将被断开,输出控制权将转移给片上外设
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; //TIM3的CHI1
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
//开启时钟,TIM3,因为TIM2用于发射PWM信号了
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
//选择时基单元的时钟,选择内部时钟
TIM_InternalClockConfig(TIM3); //TIM3的时钟单元由内部时钟来驱动
// 初始化时基单元用的结构体
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //选择滤波器1分频
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
//定时频率=72MHz/(PSC+1)/(ARR+1)
//定时1s,也就是定时频率为1Hz
TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1; //ARR,16位计数器满量程计数
//如果想要更高分辨率,ARR调成1000-1,频率72M/预分频/1000
//占空比就是CCR/1000
TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1; //PSC,测周法的标准频率fc
//72M/预分频,就是计数器自增的频率,就是计数标准频率,根据信号频率的分布范围来调整
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; //重复计数器,高级计数器才有的,置0就行,TIM2-TIM4是通用计数器
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);
//初始化输入捕获单元
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICInitStructure.TIM_Channel = TIM_Channel_1; //TIM3的通道1
TIM_ICInitStructure.TIM_ICFilter = 0xF; //滤波器滤波强度
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; //上升沿触发
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; //每次触发都有效,不分频
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; //直连输入,测频率
TIM_ICInit(TIM3, &TIM_ICInitStructure);
//通道2的初始化,可以复制一份初始化
//st公司做了TIM_PWMIConfig更方便配置,这个函数只支持通道1和通道2的配置
// TIM_ICInitStructure.TIM_Channel = TIM_Channel_2; //TIM3的通道2
// TIM_ICInitStructure.TIM_ICFilter = 0xF; //滤波器滤波强度
// TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling; //下降沿触发
// TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; //每次触发都有效,不分频
// TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_IndirectTI; //交叉输入,测占空比
// TIM_ICInit(TIM3, &TIM_ICInitStructure);
TIM_PWMIConfig(TIM3, &TIM_ICInitStructure); //这个函数会自动把另一个通道初始化成相反的配置
//配置TRGI的触发源位TI1FP1
TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);
//配置从模式为Reset,自动CNT清零
TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);
// CNT不断自增,即使信号不过来也会自增
// 这没关系,因为有信号来的时候,它就会在从模式的作用下自动清零
TIM_Cmd(TIM3, ENABLE);
}
//获取频率,单位Hz
uint32_t IC_GetFreq(void)
{
//PSC 72 - 1,fc =1MHz
return 1000000 / (TIM_GetCapture1(TIM3) + 1); //+1补误差
}
//获取占空比
uint32_t IC_GetDuty(void)
{
//高电平计数值存在CCR2里
//整个周期存在CCR1里
//CC2 / CCR1就是占空比
//为了能显示整数,乘100放大
return ((TIM_GetCapture2(TIM3)+1) * 100 / TIM_GetCapture1(TIM3)); //+1补误差
}
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "MYOLED.h"
#include "PWM.h"
#include "IC.h"
int main(void)
{
PWM_Init();
MYOLED_Init();
IC_Init();
PWM_SetPrescaler(720-1); //Freq = 72M / (PSC +1) / (ARR + 1)
PWM_SetCompare1(50); //占空比
MYOLED_ShowString(0,0,"Freq:00000Hz");
MYOLED_ShowString(0,1,"Duty:00%");
while(1)
{
MYOLED_ShowNum(5, 0, IC_GetFreq(), 5);
MYOLED_ShowNum(5, 1, IC_GetDuty(), 2);
}
}
HAL库实现
已开源到:https://gitee.com/qin-ruiqian/jiangkeda-stm32-hal
比上一个文章多了设置TIM3的通道2:

PWM.c和上一篇文章一样
IC.h
/*
* IC.h
*
* Created on: Aug 14, 2025
* Author: Administrator
*/
#ifndef HARDWARE_IC_H_
#define HARDWARE_IC_H_
typedef struct IC{
TIM_HandleTypeDef htim; //当前用的是哪个定时器
uint32_t ch; //当前用的是定时器的哪个通道
uint32_t ch2; //第二个通道
}IC;
void IC_Init(IC* ic, TIM_HandleTypeDef tim, uint32_t Channel, uint32_t Channel2); //初始化IC
uint32_t IC_GetFreq(IC* ic); //获取频率,单位Hz
uint32_t IC_GetDuty(IC* ic); //获取占空比
#endif /* HARDWARE_IC_H_ */
IC.c
/*
* IC.c
*
* Created on: Aug 14, 2025
* Author: Administrator
*/
#include "stm32f1xx_hal.h"
#include "IC.h"
//把初始化定时器TIM3的过程放到IC里面
TIM_HandleTypeDef htim; //当前用的是哪个定时器
//初始化IC
void IC_Init(IC* ic, TIM_HandleTypeDef tim, uint32_t Channel, uint32_t Channel2)
{
//开启对应定时器
ic->htim = tim;
ic->ch = Channel;
ic->ch2 = Channel2;
//打开输入捕获
HAL_TIM_IC_Start(&(ic->htim), ic->ch);
//打开输入占空比捕获
HAL_TIM_IC_Start(&(ic->htim), ic->ch2);
}
//获取频率,单位Hz
uint32_t IC_GetFreq(IC* ic)
{
//PSC 72 - 1,fc =1MHz
uint32_t capture = (HAL_TIM_ReadCapturedValue(&(ic->htim), ic->ch) + 1);
return 1000000 / capture; //+1补误差
}
//获取占空比
uint32_t IC_GetDuty(IC* ic)
{
//高电平计数值存在CCR2里
//整个周期存在CCR1里
//CC2 / CCR1就是占空比
//为了能显示整数,乘100放大
uint32_t ccr1 = HAL_TIM_ReadCapturedValue(&(ic->htim), ic->ch);
uint32_t ccr2 = HAL_TIM_ReadCapturedValue(&(ic->htim), ic->ch2);
return (ccr2+1) * 100 / ccr1; //+1补误差
}
main.c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "MYOLED.h"
#include "PWM.h"
#include "IC.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
MX_TIM3_Init();
/* USER CODE BEGIN 2 */
MYOLED_Init();
PWM pwm;
PWM_Init(&pwm, htim2, TIM_CHANNEL_1);
IC ic;
IC_Init(&ic, htim3, TIM_CHANNEL_1, TIM_CHANNEL_2);
PWM_SetCompare(&pwm, 50);
PWM_SetPrescaler(&pwm, 720-1);
MYOLED_ShowString(0,0,"Freq:00000Hz");
MYOLED_ShowString(0,1,"Duty:00%");
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
MYOLED_ShowNum(5, 0, IC_GetFreq(&ic), 5);
MYOLED_ShowNum(5, 1, IC_GetDuty(&ic), 2);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 720-1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 100-1;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2);
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_SlaveConfigTypeDef sSlaveConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 72-1;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
sSlaveConfig.InputTrigger = TIM_TS_TI1FP1;
sSlaveConfig.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sSlaveConfig.TriggerFilter = 0;
if (HAL_TIM_SlaveConfigSynchro(&htim3, &sSlaveConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&htim3, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8|GPIO_PIN_9, GPIO_PIN_SET);
/*Configure GPIO pins : PB8 PB9 */
GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
实现效果
内部PA0发射PWM信号

信号发射器发射PWM信号

浙公网安备 33010602011771号