【自学嵌入式:stm32单片机】输入捕获模式测频率
输入捕获模式测频率
接线图

输入引脚是PA6,信号从PA6进来,待测的PWM信号也算STM32自己生成的,输出引脚是PA0,所以接线直接用一根线把PA0引到PA6就行了,但是我后面会用信号发生器也生成一个信号,设置方波信号输出,高电平3.3V,低电平0V,然后直接接到PA6,另外也别忘了共地

TIM3的通道1和通道2对应PA6和PA7,通道3和通道4对应PB0和PB1
代码实现
已开源到:https://gitee.com/qin-ruiqian/jiangkeda-stm32
标准库实现
PWM.h
#ifndef __PWM_H
#define __PWM_H
void PWM_Init(void); //PWM初始化
void PWM_SetCompare1(uint16_t Compare); //调整CCR的值,占空比
void PWM_SetPrescaler(uint16_t Prescaler); //设置PSC
#endif
PWM.c
#include "stm32f10x.h"                  // Device header
//PWM初始化函数
void PWM_Init(void)
{
	//初始化PA0
	//打开APB2总线的GPIOA外设并开启时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出,
	//普通推挽/开漏输出,引脚控制权是来自于输出数据寄存器的
	//如果想用定时器来控制引脚,就需要使用复用开漏/推挽输出的模式
	//在这里输出数据寄存器将被断开,输出控制权将转移给片上外设
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //A0口打开,如果重映射,改成PIN15
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	//开启时钟,TIM2是APB1总线的外设
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
	//选择时基单元的时钟,选择内部时钟
	TIM_InternalClockConfig(TIM2); //TIM2的时钟单元由内部时钟来驱动
	// 初始化时基单元用的结构体
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //选择滤波器1分频
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
	//定时频率=72MHz/(PSC+1)/(ARR+1)
	//定时1s,也就是定时频率为1Hz
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1; //ARR,16位寄存器,在0-65535范围,为100-1,CCR数值直接就是占空比,比较直观
	//如果想要更高分辨率,ARR调成1000-1,频率72M/预分频/1000
	//占空比就是CCR/1000
	TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1; //PSC,16位寄存器,在0-65535范围,固定ARR,通过调节PSC改变PWM频率
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; //重复计数器,高级计数器才有的,置0就行,TIM2-TIM4是通用计数器
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);
	//初始化OC输出比较单元
	//使用PA0口,对应第一个输出比较通道
	TIM_OCInitTypeDef TIM_OCInitStructure;
	TIM_OCStructInit(&TIM_OCInitStructure); //给结构体赋初值
	//TIM_OCInitStructure.TIM_OCIdleState = ; //高级定时器才用到
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //设置比较模式
	//TIM_OCInitStructure.TIM_OCNIdleState = ; //高级定时器才用到
	//TIM_OCInitStructure.TIM_OCNPolarity = ; //高级定时器才用到
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //设置输出比较的极性,REF有效时输出高电平
	//TIM_OCInitStructure.TIM_OutputNState = ; //高级定时器才用到
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //设置输出使能
	//PWM频率: Freq = CK_PSC / (PSC + 1) / (ARR + 1)(也是计数器的更新频率)
	//PWM占空比: Duty = CCR / (ARR + 1)
	//PWM分辨率: Reso = 1 / (ARR + 1)
	//如果要产生一个频率为1KHz,占空比为50%,分辨率为1%的PWM波形
	//解得ARR = 100 - 1 =99,CRR = 50, PSC = 720-1=719
	//如果CCR改成10,占空比就是10%
	//CCR改成90,占空比就是90%
	//初始化阶段暂时给0
	TIM_OCInitStructure.TIM_Pulse = 0; //设置CCR
	TIM_OC1Init(TIM2, &TIM_OCInitStructure); //使用TIM2的OC1,也就是CH1通道,输出PWM,只能在PA0的引脚上输出,而不能选择任意引脚输出
	//启动定时器
	TIM_Cmd(TIM2, ENABLE);
}
//调整CCR的值(占空比)
void PWM_SetCompare1(uint16_t Compare)
{
	TIM_SetCompare1(TIM2, Compare);
}
//设置PSC
void PWM_SetPrescaler(uint16_t Prescaler)
{
	//第三个参数是重装模式
	//就还是影子寄存器的值,是写入的值立刻生效,还是在更新事件生效
	//立刻生效会切断当前波形,开始新的周期,在频率变化时会出现一个不完整的周期
	//在更新事件生效,就是会有一个缓存器,延迟参数的写入时间
	//等一个周期结束了,在更新事件时,再统一改变参数,保证每个周期完整
	//目前这个程序使用哪个参数都行
	TIM_PrescalerConfig(TIM2, Prescaler, TIM_PSCReloadMode_Immediate);
}
IC.h
#ifndef __IC_H
#define __IC_H
void IC_Init(void);
uint32_t IC_GetFreq(void);
#endif
IC.c
#include "stm32f10x.h"                  // Device header
//初始化捕获输入
void IC_Init(void)
{
	//IC初始化是每个通道共用一个初始化函数
	//初始化PA0
	//打开APB2总线的GPIOA外设并开启时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入
	//普通推挽/开漏输出,引脚控制权是来自于输出数据寄存器的
	//如果想用定时器来控制引脚,就需要使用复用开漏/推挽输出的模式
	//在这里输出数据寄存器将被断开,输出控制权将转移给片上外设
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; //TIM3的CHI1
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	//开启时钟,TIM3,因为TIM2用于发射PWM信号了
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
	//选择时基单元的时钟,选择内部时钟
	TIM_InternalClockConfig(TIM3); //TIM3的时钟单元由内部时钟来驱动
	// 初始化时基单元用的结构体
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //选择滤波器1分频
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
	//定时频率=72MHz/(PSC+1)/(ARR+1)
	//定时1s,也就是定时频率为1Hz
	TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1; //ARR,16位计数器满量程计数
	//如果想要更高分辨率,ARR调成1000-1,频率72M/预分频/1000
	//占空比就是CCR/1000
	TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1; //PSC,测周法的标准频率fc
	//72M/预分频,就是计数器自增的频率,就是计数标准频率,根据信号频率的分布范围来调整
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; //重复计数器,高级计数器才有的,置0就行,TIM2-TIM4是通用计数器
	TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);
	
	//初始化输入捕获单元
	TIM_ICInitTypeDef TIM_ICInitStructure;
	TIM_ICInitStructure.TIM_Channel = TIM_Channel_1; //TIM3的通道1
	TIM_ICInitStructure.TIM_ICFilter = 0xF; //滤波器滤波强度
	TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; //上升沿触发
	TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; //每次触发都有效,不分频
	TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; //只测频率,直连通道输入
	TIM_ICInit(TIM3, &TIM_ICInitStructure);
	
	//配置TRGI的触发源位TI1FP1
	TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);
	//配置从模式为Reset,自动CNT清零
	TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);
	// CNT不断自增,即使信号不过来也会自增
	// 这没关系,因为有信号来的时候,它就会在从模式的作用下自动清零
	TIM_Cmd(TIM3, ENABLE);
}
//获取频率,单位Hz
uint32_t IC_GetFreq(void)
{
	//PSC 72 - 1,fc =1MHz
	return 1000000 / (TIM_GetCapture1(TIM3) + 1); //+1补误差
}
main.c
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "MYOLED.h"
#include "PWM.h"
#include "IC.h"
int main(void)
{
	PWM_Init();
	MYOLED_Init();
	IC_Init();
	PWM_SetPrescaler(720-1); //Freq = 72M / (PSC +1) / (ARR + 1)
	PWM_SetCompare1(50); //占空比
	MYOLED_ShowString(0,0,"Freq:00000Hz");
	while(1)
	{
		MYOLED_ShowNum(5, 0, IC_GetFreq(), 5);
	}
}
HAL库实现
相关I/O口和定时器配置详见开源仓库对应的ioc配置文件,已开源到:https://gitee.com/qin-ruiqian/jiangkeda-stm32-hal
PWM.h
/*
 * PWM.h
 *
 *  Created on: Aug 13, 2025
 *      Author: Administrator
 */
#ifndef HARDWARE_PWM_H_
#define HARDWARE_PWM_H_
//按面向对象方式实现,省得出现全局变量重定义
typedef struct PWM
{
	TIM_HandleTypeDef htim; //当前用的是哪个定时器
	uint32_t ch; //当前用的是定时器的哪个通道
}PWM;
void PWM_Init(PWM* pwm, TIM_HandleTypeDef tim, uint32_t Channel); //初始化PWM
void PWM_SetCompare(PWM* pwm, uint16_t Compare); //调整CCR占空比
void PWM_SetPrescaler(PWM* pwm , uint16_t Prescaler); //设置PSC
#endif /* HARDWARE_PWM_H_ */
PWM.c
/*
 * PWM.c
 *
 *  Created on: Aug 13, 2025
 *      Author: Administrator
 */
#include "stm32f1xx_hal.h"
#include "PWM.h"
//初始化PWM
void PWM_Init(PWM* pwm, TIM_HandleTypeDef tim, uint32_t Channel)
{
	//开启对应定时器
	pwm->htim = tim;
	pwm->ch = Channel;
	//打开波形生成
	HAL_TIM_PWM_Start(&(pwm->htim), pwm->ch);
}
//调整CCR的值(占空比)
void PWM_SetCompare(PWM* pwm, uint16_t Compare)
{
	pwm->htim.Instance->CCR1 = Compare; //发射PWM用的CCR1
}
//设置PSC
void PWM_SetPrescaler(PWM* pwm , uint16_t Prescaler)
{
	//实现影子寄存器效果,而不是立即更改
//	// 1. 开启自动重装载预加载(确保在定时器初始化时已设置,此处可再次确认)
//	htim.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
//	HAL_TIM_PWM_Init(&htim2);  // 重新初始化以应用预加载设置(若初始化时已开启可省略)
//
//	// 2. 设置预分频值(存入影子寄存器,等待更新事件生效)
//	__HAL_TIM_SET_PRESCALER(&htim2, Prescaler);
	//立即更改
	// 第一个参数:定时器句柄(htim,对应原标准库的TIM2)
	// 第二个参数:预分频值(Prescaler,与原参数一致)
	// 该宏会直接写入预分频寄存器,实现"立即生效"(对应原标准库的TIM_PSCReloadMode_Immediate)
	__HAL_TIM_SET_PRESCALER(&(pwm->htim), Prescaler);
}
IC.h
/*
 * IC.h
 *
 *  Created on: Aug 14, 2025
 *      Author: Administrator
 */
#ifndef HARDWARE_IC_H_
#define HARDWARE_IC_H_
typedef struct IC{
	TIM_HandleTypeDef htim; //当前用的是哪个定时器
	uint32_t ch; //当前用的是定时器的哪个通道
}IC;
void IC_Init(IC* ic, TIM_HandleTypeDef tim, uint32_t Channel); //初始化IC
uint32_t IC_GetFreq(IC* ic); //获取频率,单位Hz
#endif /* HARDWARE_IC_H_ */
IC.c
/*
 * IC.c
 *
 *  Created on: Aug 14, 2025
 *      Author: Administrator
 */
#include "stm32f1xx_hal.h"
#include "IC.h"
//把初始化定时器TIM3的过程放到IC里面
TIM_HandleTypeDef htim; //当前用的是哪个定时器
//初始化IC
void IC_Init(IC* ic, TIM_HandleTypeDef tim, uint32_t Channel)
{
	//开启对应定时器
	ic->htim = tim;
	ic->ch = Channel;
	//打开输入捕获
	HAL_TIM_IC_Start(&(ic->htim), ic->ch);
}
//获取频率,单位Hz
uint32_t IC_GetFreq(IC* ic)
{
	//PSC 72 - 1,fc =1MHz
	uint32_t capture = (HAL_TIM_ReadCapturedValue(&(ic->htim), ic->ch) + 1);
	return 1000000 / capture; //+1补误差
}
main.c
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "MYOLED.h"
#include "PWM.h"
#include "IC.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* USER CODE END 1 */
  /* MCU Configuration--------------------------------------------------------*/
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
  /* USER CODE BEGIN Init */
  /* USER CODE END Init */
  /* Configure the system clock */
  SystemClock_Config();
  /* USER CODE BEGIN SysInit */
  /* USER CODE END SysInit */
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM2_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */
  MYOLED_Init();
  PWM pwm;
  PWM_Init(&pwm, htim2, TIM_CHANNEL_1);
  IC ic;
  IC_Init(&ic, htim3, TIM_CHANNEL_1);
  PWM_SetPrescaler(&pwm, 720-1); //Freq = 72M / (PSC +1) / (ARR + 1)
  PWM_SetCompare(&pwm, 50); //占空比
  MYOLED_ShowString(0,0,"Freq:00000Hz");
  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  MYOLED_ShowNum(5, 0, IC_GetFreq(&ic), 5);
    /* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
实现效果
PA0发射1Khz的信号:

信号发生器发射2Khz信号:

 
                    
                 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号