【深度学习数学基础:线性代数】4. 线性空间及线性映射:4.4 重要性质
4. 线性空间及线性映射
4.4 重要性质
\(n\)阶方阵\(\boldsymbol{A}\)其特征根、特征向量数量关系为:
- 若把\(m\)重特征值算\(m\)个,那它一定有\(n\)个特征值
- \(n\)阶方阵不一定有\(n\)个特征向量,特征向量数量视具体情况而定
- \(m\)重根\(\lambda_{i}\)对应的特征向量个数为\(n - \operatorname{rank}(\boldsymbol{A} - \lambda_{i}\boldsymbol{I})\),最少1个最多\(m\)个
特征值还有如下重要性质:
- \(\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n} = a_{11} + a_{22} + \cdots + a_{nn} = \operatorname{tr}(\boldsymbol{A})\)
- \(|\boldsymbol{A}| = \lambda_{1}\lambda_{2}\cdots\lambda_{n}\)
- 若\(\lambda\)是\(\boldsymbol{A}\)的特征值,则\(\lambda^{k}\)是\(\boldsymbol{A}^{k}\)的特征值
- 若\(\lambda\)是\(\boldsymbol{A}\)的特征值,则\(\frac{1}{\lambda}\)是\(\boldsymbol{A}^{-1}\)的特征值
- 转置不改变矩阵的特征值(即\(\boldsymbol{A}\)与\(\boldsymbol{A}^{T}\)有相同特征值)
特征向量的部分重要性质:
- 若\(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\)是方阵\(\boldsymbol{A}\)的\(m\)个特征值,\(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{m}\)依次是与之对应的特征向量,若\(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\)各不相等,则\(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{m}\)线性无关。
- 若\(\lambda_{1}\)和\(\lambda_{2}\)是矩阵\(\boldsymbol{A}\)的两个不同的特征值,它们对应的特征向量为\(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\),注意\(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}\)不是\(\boldsymbol{A}\)的特征向量,除非\(\lambda_1=\lambda_2\).
- 若\(\lambda, \boldsymbol{u}\)为\(\boldsymbol{A}\)的特征值和特征向量,则\(\lambda+c\)为\(\boldsymbol{A}+c\boldsymbol{I}\)的特征值,\(\boldsymbol{u}\)为\(\boldsymbol{A}+c\boldsymbol{I}\)的特征向量。
推导过程:
\[\begin{array}{c}
(\boldsymbol{A}+c\boldsymbol{I})\boldsymbol{u}=\mu\boldsymbol{u} \\
\boldsymbol{A}\boldsymbol{u}+c\boldsymbol{u}=\mu\boldsymbol{u} \\
\lambda\boldsymbol{u}+c\boldsymbol{u}=\mu\boldsymbol{u} \\
\mu=\lambda+c
\end{array}
\]
【注】若\(\lambda_{\boldsymbol{A}}\)为\(\boldsymbol{A}\)的特征值,\(\lambda_{\boldsymbol{B}}\)为\(\boldsymbol{B}\)的特征值,\(\lambda_{\boldsymbol{A}}+\lambda_{\boldsymbol{B}}\)不一定是\(\boldsymbol{A}+\boldsymbol{B}\)的特征值。
浙公网安备 33010602011771号