模型复现
GG-CNN
问题1:libGL.so.1: cannot open shared object file: No such file or directory
环境中缺少libGL.so.1文件,缺少GL库文件。
办法:更新apt-get:
apt-get update
安装GL库:
apt install libgl1-mesa-glx
问题2:安装包
pip install -r requirements.txt
问题3:引用数据指的是多个项目引用一份数据集
可以使用绝对路径配置数据集的路径。
问题4:TiffPage 0: <COMPRESSION.LZW: 5> requires the 'imagecodecs' package
读入.tif文件出错;
pip install imagecodecs-lite
问题5:ggcnn生成.tiff过程中无响应
python -m utils.dataset_processing.generate_cornell_depth <Path To Dataset>
将“*”通配符去掉,原因是原文为了适配路径
pcds = glob.glob(os.path.join(args.path, 'pcd*[0-9].txt'))
问题六配置训练的shell脚本
1
#!/bin/bash
3 #使用的是GPU:0 4 export CUDA_VISIBLE_DEVICES=0 6 python3.6 -u train_ggcnn.py \ 7 --description training_example2 \ 8 #运行网络 9 --network ggcnn2 \ 10 #运行的數據集 11 --dataset jacquard \ 12 #数据集 13 --dataset-path /opt/data/private/robot/jacquard 15 python3.6 -u train_ggcnn.py \ 16 --description training_example \ 17 #运行网络 18 --network ggcnn \ 19 #运行的數據集 20 --dataset cornell \ 21 #数据集 22 --dataset-path /opt/data/private/robot/cornell
结果显示:
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 16, 300, 300] 1,952 ReLU-2 [-1, 16, 300, 300] 0 Conv2d-3 [-1, 16, 300, 300] 6,416 ReLU-4 [-1, 16, 300, 300] 0 MaxPool2d-5 [-1, 16, 150, 150] 0 Conv2d-6 [-1, 16, 150, 150] 6,416 ReLU-7 [-1, 16, 150, 150] 0 Conv2d-8 [-1, 16, 150, 150] 6,416 ReLU-9 [-1, 16, 150, 150] 0 MaxPool2d-10 [-1, 16, 75, 75] 0 Conv2d-11 [-1, 32, 75, 75] 12,832 ReLU-12 [-1, 32, 75, 75] 0 Conv2d-13 [-1, 32, 75, 75] 25,632 ReLU-14 [-1, 32, 75, 75] 0 UpsamplingBilinear2d-15 [-1, 32, 150, 150] 0 Conv2d-16 [-1, 16, 150, 150] 4,624 ReLU-17 [-1, 16, 150, 150] 0 UpsamplingBilinear2d-18 [-1, 16, 300, 300] 0 Conv2d-19 [-1, 16, 300, 300] 2,320 ReLU-20 [-1, 16, 300, 300] 0 Conv2d-21 [-1, 1, 300, 300] 17 Conv2d-22 [-1, 1, 300, 300] 17 Conv2d-23 [-1, 1, 300, 300] 17 Conv2d-24 [-1, 1, 300, 300] 17 ================================================================ Total params: 66,676 Trainable params: 66,676 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.34 Forward/backward pass size (MB): 110.55 Params size (MB): 0.25 Estimated Total Size (MB): 111.15 ---------------------------------------------------------------
训练集得到的结果:
225/249 = 0.903614
验证数据集:
IOU Results: 4570/5449 = 0.838686

浙公网安备 33010602011771号