generator生成器

生成器

一边循环一边计算的机制

创建生成器方法:

1.把一个列表生成式的[]改成()

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但如果要打印generator中的元素,可以通过next()函数获得generator的下一个返回值。

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(5))
>>> for n in g:
...     print(n)
... 
0
1
4
9
16
25

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

>>>def fib(max):
...    n, a, b = 0, 0, 1 #n为迭代数
...    while n < max:
...        print(b)
...        a, b = b, a + b #赋值
...        n = n + 1
...    return 'done'
...
>>>fib(6)
1
1
2
3
5
8
'done'

2.generator函数定义中包含yield关键字,调用一个generator函数将返回一个generator

>>>def fib(max):
...    n, a, b = 0, 0, 1
...    while n < max:
...        yield b
...        a, b = b, a + b
...        n = n + 1
...    return 'done'
...
>>>f = fib(6)
>>>for n in f:
...    print(n)
1
1
2
3
5
8

最难理解的就是generator函数和普通函数的执行流程不一样。普通函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator函数,依次返回数字1,3,5:

def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

调用该generator函数时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd不是普通函数,而是generator函数,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

请务必注意:调用generator函数会创建一个generator对象,多次调用generator函数会创建多个相互独立的generator。

有的童鞋会发现这样调用next()每次都返回1:

>>> next(odd())
step 1
1
>>> next(odd())
step 1
1
>>> next(odd())
step 1
1

原因在于odd()会创建一个新的generator对象,上述代码实际上创建了3个完全独立的generator,对3个generator分别调用next()当然每个都会返回第一个值。

正确的写法是创建一个generator对象,然后不断对这一个generator对象调用next()

>>> g = odd()
>>> next(g)
step 1
1
>>> next(g)
step 2
3
>>> next(g)
step 3
5
posted @ 2024-01-25 17:27  别小乔我  阅读(49)  评论(0)    收藏  举报