推荐系统算法
1、基于人口统计学的推荐


用户画像


2、基于内容的推荐


相似度计算

基于内容的推荐算法

基于内容推荐系统的高层次结构

特征工程


数值型特征处理

归一化


离散化



类别型特征处理



时间型特征处理

统计型特征处理

推荐系统常见反馈数据

基于 UGC 的推荐

基于 UGC 简单推荐的问题

TF-IDF


TF-IDF 对基于 UGC 推荐的改进

3、基于协同过滤的推荐


3.1 基于近邻的推荐

基于用户的协同过滤(User-CF)


基于物品的协同过滤(Item-CF)


User-CF 和 Item-CF 的比较

基于协同过滤的推荐优缺点

3.2 基于模型的协同过滤


隐语义模型(LFM)

LFM 降维方法 —— 矩阵因子分解



LFM 的进一步理解


矩阵因子分解



模型的求解 —— 损失函数

模型的求解算法 —— ALS





梯度下降算法


浙公网安备 33010602011771号