BZOJ 1597: [Usaco2008 Mar]土地购买

时间限制: 10 Sec  内存限制: 162 MB
提交: 4522  解决: 1660
[提交][][]

题目描述

农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.

输入

* 第1行: 一个数: N

* 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽

输出

* 第一行: 最小的可行费用.

样例输入

4
100 1
15 15
20 5
1 100

输入解释:

共有4块土地.

样例输出

500

提示

FJ分3组买这些土地: 第一组:100x1, 第二组1x100, 第三组20x5 和 15x15 plot. 每组的价格分别为100,100,300, 总共500.

 

这个题怎么感觉这么熟悉呢?

好像是………………矩阵连乘…………………

但是好像不太一样

因为相乘矩阵的长和宽要满足一定的限制

但是这道题就没有

 

先看看矩阵连乘吧

正好好久没做了

 

矩阵连乘

是一道 区间dp

下面是不知道从哪 copy 的……

问题描述:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。

      问题解析:由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。

       完全加括号的矩阵连乘积可递归地定义为:

     (1)单个矩阵是完全加括号的;

     (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)

       例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。

      看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数((A1*A2)*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):10*5*50+10*100*50=75000次

      所以问题是:如何确定运算顺序,可以使计算量达到最小化。      

 

      算法思路:

      例:设要计算矩阵连乘乘积A1A2A3A4A5A6,其中各矩阵的维数分别是:

      A1:30*35;     A2:35*15;     A3:15*5;     A4:5*10;     A5:10*20;     A6:20*25 

 

      递推关系:

      设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。

      当i=j时,A[i:j]=Ai,因此,m[i][i]=0,i=1,2,…,n
      当i<j时,若A[i:j]的最优次序在Ak和Ak+1之间断开,i<=k<j,则:m[i][j]=m[i][k]+m[k+1][j]+pi-1pkpj。由于在计算是并不知道断开点k的位置,所以k还未定。不过k的位置只有j-i个可能。因此,k是这j-i个位置使计算量达到最小的那个位置。

      综上,有递推关系如下:

          

      构造最优解:

      若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。因此,从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]])。同理可以确定A[s[1][n]+1:n]的最优加括号方式在s[s[1][n]+1][n]处断开...照此递推下去,最终可以确定A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。

      1、穷举法

      列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。

      对于n个矩阵的连乘积,设其不同的计算次序为P(n)。每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:

      

      以上递推关系说明,P(n)是随n的增长呈指数增长的。因此,穷举法不是一个多项式时间复杂度算法。

      2、重叠递归

      从以上递推关系和构造最优解思路出发,即可写出有子问题重叠性的递归代码实现:

为什么要过别人为我安排的生活.
posted @ 2017-05-23 21:40  Grary  阅读(141)  评论(0编辑  收藏  举报
博客园 首页 私信博主 编辑 关注 管理 新世界