点分治模板-Tree(点分治) POJ - 1741
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.
The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
题目大意就是给一棵树,每条边有一个长度,两个点之间的距离就是连接它俩的边的长度之和。求出这棵树中满足距离不大于 K 的点对个数。
1.对于一棵子树的分治,首先求出它的重心, 我们目的是对这棵子树讨论所有经过重心的路径。(重心的作用是保证时间复杂度)
(一棵子树的重心其实就是你要找到一个点,使得删掉这个点后,这棵子树剩下最大(节点个数最多)联通块最小。)
2.之后,以此重心为根节点,对这棵树进行一遍深搜,得出每个节点到重心的距离dis[]
3.之后,这棵子树中相连的路径会经过重心且对答案有贡献的点对(
i,j) (i<j)就会是这样: dis[i]+dis[j] <= K 且在去除重心后,i 与 j 不在同一个联通块里。#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn=10004; struct node { int v; int w; int from; }edge[maxn<<1]; int n,m,allnode; int root,ans,cnt=-1; int siz[maxn],son[maxn];//子树的大小,点的最大子树的大小 int vis[maxn],head[maxn]; int depth[maxn],dis[maxn]; void ADD(int u,int v,int w) { edge[++cnt].v=v; edge[cnt].w=w; edge[cnt].from=head[u]; head[u]=cnt; } void get_root(int u,int fa)//求重心 { siz[u]=1; son[u]=0; for(int i=head[u];i!=-1;i=edge[i].from) { int v=edge[i].v; if(vis[v]||v==fa) { continue; } get_root(v,u); siz[u]+=siz[v]; son[u]=max(son[u],siz[v]); } son[u]=max(son[u],allnode-siz[u]); if(son[u]<son[root]) { root=u; } } void get_depth(int u,int fa)//获取子树所有节点与根的距离 { depth[++depth[0]]=dis[u]; for(int i=head[u];i!=-1;i=edge[i].from) { int v=edge[i].v; if(v==fa||vis[v]) { continue; } dis[v]=dis[u]+edge[i].w; get_depth(v,u); } } int cal(int u,int now)//以重心为u的情况下,所有情况的结果 { dis[u]=now;depth[0]=0; get_depth(u,0); sort(depth+1,depth+depth[0]+1); int res=0; int l=1,r=depth[0]; while(l<r) { if(depth[l]+depth[r]<=m) { res+=(r-l); l++; } else { r--; } } return res; } void work(int u)//以u为重心进行计算 { vis[u]=1; ans+=cal(u,0); for(int i=head[u];i!=-1;i=edge[i].from) { int v=edge[i].v; if(vis[v]) { continue; } ans-=cal(v,edge[i].w); allnode=siz[v]; root=0; get_root(v,u); work(root); } } int main() { while(scanf("%d %d",&n,&m)!=EOF&&(n||m)) { memset(head,-1,sizeof(head)); memset(vis,0,sizeof(vis)); cnt=-1; for(int i=1;i<n;i++) { int u,v,w; scanf("%d %d %d",&u,&v,&w); ADD(u,v,w); ADD(v,u,w); } root=ans=0; allnode=n; son[0]=0x3f3f3f3f; get_root(1,0); work(root); printf("%d\n",ans); } return 0; }

浙公网安备 33010602011771号