Python线程、进程知识整理
一.python线程
Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 import threading 4 import time 5 6 def show(arg): 7 time.sleep(1) 8 print 'thread'+str(arg) 9 10 for i in range(10): 11 t = threading.Thread(target=show, args=(i,)) 12 t.start() 13 14 print 'main thread stop'
上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
更多方法:
- start 线程准备就绪,等待CPU调度
- setName 为线程设置名称
- getName 获取线程名称
- setDaemon 设置为后台线程或前台线程(默认)
如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止 - join 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
- run 线程被cpu调度后自动执行线程对象的run方法
1 import threading 2 import time 3 4 5 class MyThread(threading.Thread): 6 def __init__(self,num): 7 threading.Thread.__init__(self) 8 self.num = num 9 10 def run(self):#定义每个线程要运行的函数 11 12 print("running on number:%s" %self.num) 13 14 time.sleep(3) 15 16 if __name__ == '__main__': 17 18 t1 = MyThread(1) 19 t2 = MyThread(2) 20 t1.start() 21 t2.start()
二.线程锁(Lock、RLock)
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 import threading 4 import time 5 6 gl_num = 0 7 8 def show(arg): 9 global gl_num 10 time.sleep(1) 11 gl_num +=1 12 print gl_num 13 14 for i in range(10): 15 t = threading.Thread(target=show, args=(i,)) 16 t.start() 17 18 print 'main thread stop' 19 20 未使用锁
互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。
三.信号量(Semaphore)
1 import threading,time 2 3 def run(n): 4 semaphore.acquire() 5 time.sleep(1) 6 print("run the thread: %s" %n) 7 semaphore.release() 8 9 if __name__ == '__main__': 10 11 num= 0 12 semaphore = threading.BoundedSemaphore(5) #最多允许5个线程同时运行 13 for i in range(20): 14 t = threading.Thread(target=run,args=(i,)) 15 t.start()
四.事件(event)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- clear:将“Flag”设置为False
- set:将“Flag”设置为True
五.条件(Condition)
使得线程等待,只有满足某条件时,才释放n个线程
1 def condition_func(): 2 3 ret = False 4 inp = input('>>>') 5 if inp == '1': 6 ret = True 7 8 return ret 9 10 11 def run(n): 12 con.acquire() 13 con.wait_for(condition_func) 14 print("run the thread: %s" %n) 15 con.release() 16 17 if __name__ == '__main__': 18 19 con = threading.Condition() 20 for i in range(10): 21 t = threading.Thread(target=run, args=(i,)) 22 t.start()
六.Timer
七.python进程
八.进程数据共享
进程各自持有一份数据,默认无法共享数据
1 #!/usr/bin/env python 2 #coding:utf-8 3 4 from multiprocessing import Process 5 from multiprocessing import Manager 6 7 import time 8 9 li = [] 10 11 def foo(i): 12 li.append(i) 13 print 'say hi',li 14 15 for i in range(10): 16 p = Process(target=foo,args=(i,)) 17 p.start() 18 19 print 'ending',li 20 21 进程间默认无法数据共享
1 'c': ctypes.c_char, 'u': ctypes.c_wchar, 2 'b': ctypes.c_byte, 'B': ctypes.c_ubyte, 3 'h': ctypes.c_short, 'H': ctypes.c_ushort, 4 'i': ctypes.c_int, 'I': ctypes.c_uint, 5 'l': ctypes.c_long, 'L': ctypes.c_ulong, 6 'f': ctypes.c_float, 'd': ctypes.c_double 7 8 类型对应表
1 from multiprocessing import Process, Queue 2 3 def f(i,q): 4 print(i,q.get()) 5 6 if __name__ == '__main__': 7 q = Queue() 8 9 q.put("h1") 10 q.put("h2") 11 q.put("h3") 12 13 for i in range(10): 14 p = Process(target=f, args=(i,q,)) 15 p.start() 16 17 Code
当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。
九.进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
- apply
- apply_async
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 from multiprocessing import Process,Pool 4 import time 5 6 def Foo(i): 7 time.sleep(2) 8 return i+100 9 10 def Bar(arg): 11 print arg 12 13 pool = Pool(5) 14 #print pool.apply(Foo,(1,)) 15 #print pool.apply_async(func =Foo, args=(1,)).get() 16 17 for i in range(10): 18 pool.apply_async(func=Foo, args=(i,),callback=Bar) 19 20 print 'end' 21 pool.close() 22 pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】Flutter适配HarmonyOS 5知识地图,实战解析+高频避坑指南
【推荐】凌霞软件回馈社区,携手博客园推出1Panel与Halo联合终身会员
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步