今日总结12.19

实验7

Spark初级编程实践

 

1.实验目的

1)掌握使用Spark访问本地文件和HDFS文件的方法

2掌握Spark应用程序的编写、编译和运行方法

2.实验平台

1操作系统:Ubuntu18.04(或Ubuntu16.04

2Spark版本:2.4.0

3Hadoop版本:3.1.3

3.实验步骤

1Spark读取文件系统的数据

1)在spark-shell中读取Linux系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数;

 

 

 

 

2)在spark-shell中读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;

 

 

 

 

3)编写独立应用程序(推荐使用Scala语言),读取HDFS系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数;通过sbt工具将整个应用程序编译打包成 JAR包,并将生成的JAR包通过 spark-submit 提交到 Spark 中运行命令。

 

 

 

 

 

接下来,可以通过如下代码将整个应用程序打包成 JAR

 

 

 

2编写独立应用程序实现数据去重

对于两个输入文件AB,编写Spark独立应用程序(推荐使用Scala语言),对两个文件进行合并,并剔除其中重复的内容,得到一个新文件C。下面是输入文件和输出文件的一个样例,供参考。

输入文件A的样例如下:

20170101    x

20170102    y

20170103    x

20170104    y

20170105    z

20170106    z

输入文件B的样例如下:

20170101    y

20170102    y

20170103    x

20170104    z

20170105    y

根据输入的文件AB合并得到的输出文件C的样例如下:

20170101    x

20170101    y

20170102    y

20170103    x

20170104    y

20170104    z

20170105    y

20170105    z

20170106    z

 

编写Scale文件和simple.sbt文件,然后打包

 

这是编写的Scala 文件:

 

查看结果:

 

posted @ 2023-12-19 17:03  庞司令  阅读(27)  评论(0)    收藏  举报